Model Question Paper

Complex Numbers - Part I

12th Standard Maths

I.Answer all the Questions.		

II.Use blue pen only. Time: 00:45:00 Hrs

Total Marks: 80

Reg.No.

4 x 1 = 4

1) The value of $\left[\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right]^{100} + \left[\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right]^{100}$ is (a) 2 (b) 0 (c) -1 (d) 1

2) The modules and amplitude of the complex number $\left[e^{3-i\frac{\pi}{4}}\right]^3$ are respctively (a) $e^9, \frac{\pi}{2}$ (b) $e^9 \frac{-\pi}{2}$ (c) $e^6 \frac{-3\pi}{4}$ (d) $e^9 \frac{-3\pi}{4}$

3) If (m-5)+i(n+4) is the complex conjugate of (2m+3)+i(3n-2) then (n,m) are $\begin{array}{ll} \text{(a)} & \left(\frac{-1}{2},-8\right) & \text{(b)} & \left(\frac{-1}{2},8\right) & \text{(c)} & \left(\frac{1}{2},-8\right) & \text{(d)} & \left(\frac{1}{2},8\right) \\ \text{4)} & \text{If } x^2+y^2 = 1 \text{ then the value of } \frac{1+x+iy}{1+(x-iy)} \text{ is} \end{array}$

(a) x-iy (b) 2x (c) -2iy (d) x+iy

 $4 \times 3 = 12$

5) P represents the variable complex number z. Find the locus of P, if $\;|z-5i|=|z+5i|$

Express the following in the standard form a+ib , $\frac{2(i-3)}{(1+i)^2}$

Find the real and imaginary parts of the following complex numbers:

Find the least positive integer n such that $\left(rac{1+i}{1-i}
ight)^n=1$

Section-C 4 x 6 = 24

Express the following in the standard form a+ib , $\frac{(1+i)(1-2i)}{1+2i}$ 9)

10) Find the real values of x and y for which the following equations are satisfied (1-i)x + (1+i)y = 1-3i

11) For what values of X and Y, the numbers $-3 + ix^2y$ and $x^2 + y + 4i$ are complex conjugate of each other?

12) Prove that the triangle formed by the points representing the complex numbers (10+8i), (-2+4i) and (-11+31i) on the Argand plane is right angled.

4 x 10 = 40

13) If P represents the variable complex number z. Find the locus of P, if $Im \left[\frac{2z+1}{iz+1} \right] = -2$

14) Solve: $x^4 - x^3 + x^2 - x + 1 = 0$

Find all the values of $\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$ and hence prove that the product of the value is 1

16) If α and β are the roots of $x^2-2x+2=0$ and $\cot\theta=y+1$ Show that $\frac{(y+\alpha)^n-(y+\beta)^n}{2}$
