Model Question Paper

Matrices and Determinants- Part III

12th Standard

Maths	Reg.No.:			

I.Answer all the Questions.

II.Use blue pen only.

Time: 01:15:00 Hrs Total Marks: 71 5 x 1 = 5

Section-A

- 1) If A is a matrix of order 3, then det(kA) is,
 - (a) $k^3 det(A)$ (b) $k^2 det(A)$ (c) k det(A) (d) det(A)
- 2) If l is the unit matrix of order n, where $k \neq 0$ is a constant, then adj(kl) is
 - $\text{(a)} \ \ k^n(adj \ I) \qquad \text{(b)} \ \ k(adj \ I) \qquad \text{(c)} \ \ k^2(adj(I)) \qquad \text{(d)} \ \ k^{n-1}(adj \ I)$
- 3) If A and B are any two matrices such that AB= 0 and A is non-singular, then
 - (a) B=0 (b) B is singular (c) B is non-singular (d) B=A

4) If A =
$$\begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$$
, then A^{12} is,

(a)
$$\begin{pmatrix} 0 & 0 \\ 0 & 60 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 \\ 0 & 5^{12} \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(a)
$$\begin{pmatrix} 0 & 0 \\ 0 & 60 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 \\ 0 & 5^{12} \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

5) Inverse of $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ is,

(a) $\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} -2 & 5 \\ 1 & -3 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & -1 \\ -5 & -3 \end{pmatrix}$ (d) $\begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}$

4 x 3 = 12

- Find the adjoint of the following matrices: $\begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \end{bmatrix}$
- 7) Solve the following non-homogeneous system of linear equations by determinant method: 2x + 3y = 5; 4x + 6y = 12
- Find the inverse of the following matrices: $\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$
- Find the inverse of the following matrices: $\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$

Section-C 4 x 6 = 24

- Find the inverse of the following matrix: $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$
- 11) If $A=\begin{bmatrix}1&2\\1&1\end{bmatrix}$ and $B=\begin{bmatrix}0&-1\\1&2\end{bmatrix}$ verify that $(AB)^{-1}=B^{-1}A^{-1}$
- 12) Solve by matrix inversion method x+y=3, 2x+3y=8
- Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$

3x 10 = 30

- 14) Solve the following non-homogeneous system of linear equations determinant method: 3x + y z = 2; 2x y + 2z = 6; 2x + y 2z = -2
- 15) Solve the following non-homogeneous system of linear equations determinant method: $x+2y+z=6\;;\;3x+3y-z=3\;;\;2x+y-2z=-3$
- Solve the following non-homogeneous system of linear equations determinant method: $\frac{1}{x} + \frac{2}{y} \frac{1}{z} = 1$; $\frac{2}{x} + \frac{4}{y} + \frac{1}{z} = 5$; $\frac{3}{x} \frac{2}{y} \frac{2}{z} = 0$
 - A small seminar hall can hold 100 chairs. Three different colours (red, blue and green) of chairs are available. The cost of a red chair is Rs. 240, cost of blue chair is Rs. 260 and the cost of a green chair is Rs. 300. The total cost of chair is Rs. 25,000. Find atleast 3 different solution of the number of chairs in each colour to be purchased.
