Model Question Paper

Nuclear physics - Part III

	12th Standard					
	Physics	Reg.No.:	T			
	I.Answer all questions		 	_		
II.U	Jse blue pen only.					
Tir	ne : 01:00:00 Hrs		7	Total	Marks	: 75
	Part-A				3 x	1 = 3
1)	5 5					
	(a) 1000 eV to 2000 eV (b) 2000 ev to 0.5 ev (c) Oev to 1000 eV (d) 0.5 ev to 10 mec					
2)	The mass of electron istimes the mass of proton.					
	(a) 1836 (b) $1/1836$ (c) 1.67×10^{27} (d) 9.11×10^{31}					
3)	The nuclear radius is given by					
	(a) $R = r_0^3 A$ (b) $R = r_0^{1/3} A^3$ (c) $R = r_0 A^{1/3}$ (d) $R = ro^3 A^{1/3}$					
	Part-B				5 x 3	= 15
4)	Define: Nuclear fission.					
5)	What is controlled chain reaction?					
6)	What is nuclear reactor?					
7)	What are the uses of nuclear reactors?					
8)	What is hydrogen bomb? Name the principle of it.					
	Part-C				5 x 5	= 25
9)	Explain the radio-carbon dating method.					
10	State the properties of $lpha$ -rays.					
11	Obtain an expression to deduce the amount of the radioactive substance present at any moment.					
	Part-D			3	3 x 10	= 30
12	Describe Bainbridge mass spectrometer to determine the isotopic masses of nuclei.					
13)	Explain the applications of radio isotopes in vari <mark>ous fields.</mark>					
14	Define binding energy. Explain the variatio <mark>n of bindi</mark> ng energy w <mark>ith mass</mark> number.					
15)	Determine the amount of PO^{210} required to provide a source of alpha particles of activity 5 milli curie. Given $T_{1/2}$ of polonium is	138 days.				
	b) Calculate the energy released in the reaction $_{13}A1^{27}+_{1}H^{2} \rightarrow_{12}Mg^{25}+_{2}He^{4}$					
	Given:					
	Mass of ₁₃ A1 ²⁷ - 26.981535 amu					
	Mass of ₁ H ² - 2.014102 amu					
	Mass of ₁₂ Mg ²⁵ - 24.98584 amu					

Mass of ₂He⁴ - 4.002604 amu