Model Question Paper
 Dual nature of radiation and Matter - relativity - Part V

12th Standard

Physics

Reg.No. \square
I.Answer all the questions.

II.Use blue pen only.

Time : 01:30:00 Hrs

1) The wavelength of electron having frequency of $3.3 \times 10^{-24} \mathrm{kgm} / \mathrm{s}$ is \qquad
(a) $10 \AA$
(b) $2 \AA$
(c) $20 \AA$
(d) $1 \AA$
2) An alpha particle and a proton are accelerated through the same potential.The ratio of their de Broglie wavelength is \qquad
(a) $1: 1$
(b) $1: 2$
(c) $1: 3$
(d) $1: 2 \sqrt{2}$
3) The energy required for the transition $n=2$ to $n=\infty$
(a) 3.4 eV
(b) 1.7 eV
(c) 6.8 eV
(d) -13.6 eV
4) Threshold frequency of metal is $10^{5} \mathrm{~Hz}$, the frequency of incident light is $2 \times 10^{15} \mathrm{~Hz}$ then the energy of photo electron emitted is \qquad -
(a) $6.6 J$
(b) $6.625 \times 10^{-19} \mathrm{~J}$
(c) $12.25 \times 10^{19} \mathrm{~J}$
(d) $2.25 \times 10^{-19} J$
5) If threshold wavelength of sodium is $6800 \AA$ what is its work function?
(a) 0.91 eV
(b) 13.6 eV
(c) 1.82 eV
(d) 1.72 eV

Part-B

6) Find de-Broglie wavelength of electron in the fourth orbit of hydrogen atom.
7) Calculate the de Broglie wavelength of an electron, if the speed is $10^{5} \mathrm{~ms}^{-1}$. (Given $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg} ; \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$).
8) Calculate the threshold frequency of photons, which can remove photoelectrons from cesium of work function 1.8 eV
9) What is the de- Broglie wavelength of an electron of kinetic energy 120 eV ?

Part-C

10) At what speed is a particle moving if the mass is equal to three times its rest mass.
11) The time interval measured by an observer at rest is $2.5 \times 10^{-8} \mathrm{~s}$. What is the time interval as measured by an observer moving with a velocity $\mathrm{v}=0.73 \mathrm{c}$.
12) State the laws of photoelectric emission
13) List the uses and limitations of an electron microscope.
14) Explain the construction and working of a photo-emissive cell with diagram.
15) a) Explain the effect of frequency of incident radiation on stopping potential.
b) Explain Lorentz-Fitzerold construction or Length contraction.
