Model Question Paper

Dual nature of radiation and Matter - relativity - Part V

12th Standard

	Physics	eg.No.:
I	I.Answer all the questions.	
I	II.Use blue pen only.	
Tim	ne : 01:30:00 Hrs	Total Marks : 80
	Part-A	5 x 1 = 5
1)	The wavelength of electron having frequency of $3.3 imes 10^{-24} kgm/s$ is	
	(a) $10\dot{A}$ (b) $2\dot{A}$ (c) $20\dot{A}$ (d) $1\dot{A}$	
2)	An alpha particle and a proton are accelerated through the same potential. The ratio of their de Broglie wavelength is	
	(a) $1:1$ (b) $1:2$ (c) $1:3$ (d) $1:2\sqrt{2}$	
3)	The energy required for the transition $n=2$ to $n=\infty$	
	(a) 3.4eV (b) 1.7eV (c) 6.8eV (d) -13.6eV	
4)	Threshold frequency of metal is 10 ⁵ Hz, the frequency of incident light is $2 imes 10^{15} Hz$ then the energy of photo electron emitted is	
	(a) $6.6J$ (b) $6.625 imes 10^{-19} J$ (c) $12.25 imes 10^{19} J$ (d) $2.25 imes 10^{-19} J$	
5)	If threshold wavelength of sodium is $6800 \AA$ what is its work function?	
	(a) 0.91eV (b) 13.6 eV (c) 1.82 eV (d) 1.72 eV	
	Part-B	4 x 3 = 12
6)	Find de-Broglie wavelength of electron in the fourth orbit of hydrogen atom.	
7)	Calculate the de Broglie wavelength of an electron, if the speed is 10^5 ms^{-1} . (Given m=9.1X10 ⁻³¹ kg; h=6.626X10 ⁻³⁴ J s).	
8)	Calculate the threshold frequency of photons, which can remove photoelectrons from cesium of work function 1.8 eV	
9)	What is the de-Broglie wavelength of an electron of kinetic energy 120 eV?	
	Part-C	2 x 5 = 10
10)) At what speed is a particle moving if the mass is equal to three times its rest mass.	
11)) The time interval measured by an observer at rest is 2.5 x 10 ⁻⁸ s. What is the time interval as measured by an observer moving with a vel	locity v = 0.73 c.
		5 x 5 = 25
12)) State the laws of photoelectric emission	
13)) List the uses and limitations of an electron microscope .	
14)) Explain the construction and working of a photo-emissive cell with diagram.	
15)) a) Explain the effect of frequency of in <mark>cident radiation on stopping potential.</mark>	
	(OR)	
	b) Explain Lorentz-Fitzerold construction or Length contraction.	
