Model Question Paper

Application of differentiation- II - Part III
12th Standard

Business Maths

Reg.No. \square
I.Answer all the questions.
II.Use Blue pen only.

Time : 01:00:00 Hrs

Section-A

1) If $f(x, y)=2 x+y e^{-x}$, then $f_{y}(1,0)$ is equal to
(a) e (b) $\frac{1}{e}$
(c) e^{2}
(d) $\frac{1}{e^{2}}$
2) If $f(x, y)=x^{3}+y^{3}+3 x y$ then $f_{x y}$ is
(a) $6 x \quad$ (b) $6 y$ (c) 2 (d) 3
3) The elasticity of demand when marginal revenue is zero, is
(a) 1
(b) 2
(c) -5
(d) 0

Section-B

4) The cost function, when the output is x , is given by $C=x\left(2 e^{x}+e^{x}\right)$. Show that the minimum avertage cost is $2 \sqrt{2}$.
5) Find EOQ for the data given below.Also verify that carrying costs is equal to to ordering costs at EOQ .

Item	Montly Requirement	Ordering cost per order	Carrying cost Per unit
A	9000	Rs. 200	Rs. 3.60
B	25000	Rs. 648	Rs. 10.00
C	8000	Rs. 100	Rs. 0.60

6) If $u=x^{3}+y^{3}+z^{3}-3 x y z$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=3 u$
7) If $u=x^{2} y+y^{2} z+z^{2} x$, show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=(x+y+z)^{2}$
8) If $u=\log \sqrt{x^{2}+y^{2}}$, show that $\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\frac{1}{x^{2}+y^{2}}$

Section-C

9) A firm has revenue function $R=8 x$ and a production cost function $C=150000+60\left(\frac{x^{2}}{900}\right)$. Find the total profit function and the number of units to be sold to get the maximum profit.
10) A radio manufacturer finds that he can sell x radios per week at a Rs. p each,where $p=2\left(100-\frac{x}{4}\right)$.His cost of production of x radios per week is $R s$. (120x $\left.+\frac{x^{2}}{4}\right)$.Show that his profit is maximum is when the production is 40 radios per week. Find also his maximum profit per week.
11) A manufacturer can sell x items per week at a price of $p=600-4 x$ rupees. Production cost of x items works out to Rs. C where $C=40 x+2000$. How much production will yield maximum profit?
12) Find the optimum output of a firm whose total revenue and total cost functions are given by $R=30 x-x^{2}$ and $C=20+4 x$, x being the output of the firm.
13) Calculate the EOQ in units and total variable cost for the following items, assuming an ordering cost of Rs. 5 and a holding cost of 10%

Item	Annual demand	Unit price (Rs.)
A	460 Units	1.00
B	392 Units	8.60
C	800 Units	0.02
D	1500 Units	0.52

