Model Question Paper

Algebra - Part V

10th Standard

Maths

swor all the questions		

Reg.No.:

I.Answer all the questions. II.Use Blue pen only.

Time: 01:00:00 Hrs

Total Marks: 50

5 x 1 = 5

Section-A

A quadratic equation whose one root is 3 is

(a)
$$x^2 - 6x - 5 = 0$$
 (b) $x^2 + 6x - 5 = 0$ (c) $x^2 - 5x - 6 = 0$ (d) $x^2 - 5x + 6 = 0$

2) The common root of the equations $x^2+bx+c=0$ and $x^2+bx-a=0$ is

(a)
$$\frac{c+a}{2b}$$
 (b) $\frac{c-a}{2b}$ (c) $\frac{c+b}{2a}$ (d) $\frac{a+b}{2c}$

3) If lpha, eta are the roots of $ax^2+bx+c=0$ a
eq 0 ,then the wrong statement is

$$\text{(a)} \ \ \alpha^2+\beta^2=\frac{b^2-2ac}{a^2} \quad \text{(b)} \ \ \alpha\beta=\frac{c}{a} \quad \text{(c)} \ \ \alpha+\beta=\frac{b}{a} \quad \text{(d)} \ \ \frac{1}{\alpha}+\frac{1}{\beta}=\frac{b}{c}$$

4) If α and β are the roots of $ax^2 + bx + c = 0$, then one of the quadratic equations whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$, is

(a)
$$ax^2 + bx + c = 0$$
 (b) $bx^2 + ax + c = 0$ (c) $cx^2 + bx + a = 0$ (d) $cx^2 + ax + b = 0$

5) Let b=a+c .Then the equation $ax^2+bx+c=0$ has equal roots ,if

(a)
$$a=c$$
 (b) $a=-c$ (c) $a=2c$ (d) $a=-2c$

Section-B 10 x 2 = 20

- 6) Simplify the following as a quotient of two polynomials in the simplest form. $\frac{2x^2-5x+3}{x^2-3x+2} \frac{2x^2-7x-4}{2x^2-3x-2}$
- 7) Find the square root of the following $289(a-b)^4(b-c)^6$
- 8) Find the square root of the following $\left(x+11
 ight)^2-44x$
- 9) Find the square root of the following $\left(x-y
 ight)^2+4xy$
- 10) Find the square root of the following $121x^8y^6 \div 81x^4y^8$
- 11) Find the square root of the following: $4x^2 + 9y^2 + 25z^2 12xy + 30yz 20zx$
- 12) Find the square root of the following: $x^4 + \frac{1}{x^4} + 2$
- 13) Solve the following quadratic equations using quadratic formula. $15x^2-11x+2=0$
- 14) Solve the following quadratic equations using quadratic formula. $x + \frac{1}{x} = 2\frac{1}{2}$
- 15) Solve the following quadratic equations using quadratic formula. $3a^2x^2-abx-2b^2=0$

Section-C 5 x 5 = 25

- 16) If α and β are the roots of the equation $3x^2-6x+1=0$, form an equation whose roots are $2\alpha+\beta, 2\beta+\alpha$
- 17) If α and β are the roots of the equation $2x^2-3x-1=0$, find the values of $\alpha^4+\beta^4$
- 18) If α and β are the roots of the equation $2x^2 3x 1 = 0$, find the values of $\frac{\alpha^3}{\alpha} + \frac{\beta^3}{\alpha}$
- 19) Determine the nature of roots of the following quadratic equations $\,2x^2+5x+5=0\,$
- 20) Multiply $\frac{x^3-8}{x^2-4}by\frac{x^2+6x+8}{x^2+2x+4}$
