Model Question Paper

Dual nature of radiation and Matter - relativity - Part IV

12th Standard

	Physics Reg.No. :		
I	I.Answer all the questions.		
I	II.Use blue pen only.		
Tin	Time : 01:30:00 Hrs	Total M	arks:90
	Part-A		5 x 1 = 5
1)	1) The wave number of light of radiation of wavelength 5000 <i>A</i> is		
	(a) $2 imes 10^{-\imath}m^{-1}$ (b) $2 imes 10^{-6}m^{-1}$ (c) $5 imes 10^{-\imath}m^{-1}$ (d) $2 imes 10^{6}m^{-1}$		
2)	2) If the momentum of a radiating photon is $3.3 imes 10^{-29} kgms^{-1}$ then its waveelngth is		
	(a) $6 imes 10^{-3}m$ (b) $3 imes 10^{-3}m$ (c) $2 imes 10^{-3}m$ (d) $2 imes 10^{-5}m$		
3)	3) de Broglie wavelength of a proton is moving with 1/15 th of velocity of light is		
	(a) $3 imes 10^{-14}m$ (b) $2 imes 10^{-15}m$ (c) $2 imes 10^{-14}m$ (d) $3 imes 10^{-16}m$		
4)	4) The de Brolie wavelength of an electron having KE of 20eV is		
	(a) $0.275nm$ (b) $2.75 \mathring{A}$ (c) $2.75m$ (d) $0.275 \mathring{A}$		
5)	5) A particle of mass 10 ⁻³⁴ kg is moving with a speed of $1.8 imes 10^8 m/s$.The mass of the particle when it is in motion is		
	(a) $12.5 imes 10^{-24}kg$ (b) $1.25 imes 10^{-24}kg$ (c) $0.125 imes 10^{-24}kg$ (d) $12.5 imes 10^{-22}kg$		
	Part-B	e	5 x 5 = 30
6)	6) At what speed is a particle moving if the mass is equal to three times its rest mass.		
7)	7) How fast would a rocket have to go relative to an observer for its length to be corrected to 99% of its length at rest.		
8)	8) The time interval measured by an observer at rest is 2.5 x 10 ⁻⁸ s. What is the time interval as measured by an observer moving with a velocity v =	0.73 c.	
9)	n the Bohr model of hydrogen atom, what is the de Broglie wavelength λ for the electron when it is in the (i) n=1 level and (ii) n=4 level. In each case, compare de Broglie		
	wave length to the circumference of the orbit		
10)	the Bohr model of hydrogen atom, what is the de-Broglie wavelength λ for the electron when it is in the 1) n=1 level and 2) n=4 level. In each case, compare the de Broglie		
	wave to the circumference of the orbit.		
11)	JV light of wavelength 2271 Å from a source irradiates a photo-cell which is made of molybdenium metal. If the stopping potential is 1.3 volt, calculate the work function of		
	the metal.How would the photocell respond to high intensity (10 ⁵ Wm ⁻²) red light of wavelength $6328 \AA$ produced by He-Ne.		
		e	5 x 5 = 30
12)	12) List the uses and limitations of an electron microscope .		
13)	13) Explain the construction and working of a photo-emissive cell with diagram.		
Gei	Generic 10		2X10=20
14)	14) a) Explain the effect of frequency of incident radiation on stopping potential.		
	b) Explain the construction of simple photoemissive cell.		

- 15) a) Explain Lorentz-Fitzerold construction or Length contraction.
 - b) Explain the wave mechanical concept of atom.