Model Question Paper

Vector Algebra - Part III

12th Standard Maths

I.Answer all the Ouestions.		

II.Use blue pen only.

Time: 01:15:00 Hrs

Total Marks: 71 Section-A 5 x 1 = 5

Reg.No.

1) If $\overrightarrow{PR}=$ $2\vec{i}+\vec{j}+\vec{k}$, $\overrightarrow{QS}=$ $-\vec{i}+3\vec{j}+2\vec{k}$ then the area of the quadrilateral PQRS is (a) $5\sqrt{3}$ (b) $10\sqrt{3}$ (c) $\frac{5\sqrt{3}}{2}$ (d) $\frac{3}{2}$

The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of parallelogram OPRQ. Then $\angle POQ$ is, $\text{(a)} \ \ tan^{-1}\big(\tfrac{1}{3}\big) \qquad \text{(b)} \ \ cos^{-1}\big(\tfrac{3}{10}\big) \qquad \text{(c)} \ \ sin^{-1}\big(\tfrac{3}{\sqrt{11}}\big) \qquad \text{(d)} \ \ sin^{-1}\big(\tfrac{1}{3}\big)$

3) If the projection of \vec{a} on \vec{b} and the projection of \vec{b} on \vec{a} are equal then the angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ is, (a) $\theta = \frac{\pi}{2}$ (b) $\theta = \frac{\pi}{3}$ (c) $\theta = \frac{\pi}{4}$ (d) $\theta = \frac{2\pi}{3}$

4) If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ for non coplanar vectors $\vec{a}, \vec{b}, \vec{c}$ then (a) \vec{a} is parallel to \vec{b} (b) \vec{b} is parallel to \vec{c} (c) \vec{c} is parallel to \vec{a} (d) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

5) If a line makes 45° , 60° with positive direction of axes x and y then the angle it makes with the z axis is

(a) 30° (b) 90° (c) 45° (d) 60°

Section-B 4 x 3 = 12

6) Find the unit vectors perpendicular to the plane containing the vectors $2\vec{i} + \vec{j} + \vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$

Find the vectors whose length 5 and which are perpendicular to the vectors $\vec{a} = 3\vec{i} + \vec{j} - 4\vec{k}$ and $\vec{b} = 6\vec{i} + 5\vec{j} - 2\vec{k}$

8) If $\vec{a} = \vec{i} + 3\vec{j} - 2\vec{k}$ and $\vec{b} = -\vec{i} + 3\vec{k}$ then find $\vec{a} \times \vec{b}$. Verify that \vec{a} and \vec{b} are perpendicular to $\vec{a} \times \vec{b}$ separately.

9) For any three vectors \vec{a} , \vec{b} , \vec{c} show that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$

 $4 \times 6 = 24$

10) Show that the points (1,3,1), (1,1,-1), (-1,1,1)(2,2,-1) are lying on the same plane. (Hint: It is enough to prove any three vectors formed by these four points

11) If $\vec{a} = 2\vec{i} + 3\vec{j} - 5\vec{k}$, $\vec{b} = -\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{c} = 4\vec{i} - 2\vec{j} + 3\vec{k}$, show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq (\vec{b} \times \vec{c})$.

12) Prove that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if \vec{a} and \vec{c} are collinear (vector triple products is non-zero)

13) Prove that $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) + (\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) = 0$

3 x 10 = 30

14) Find the vector and Cartesian equations of the plane passing through the points A(1,-2,3) and B(-1,2,-1) and its parallel to the line $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z-1}{4}$

15) Find the vector and cartesian equation of the plane through the points (1,2,3) and (2,3,1) perpendicular to the plane 3x-2y+4z-5=0.

16) a) Find the vector and Cartesian equation of the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ and passing through the point (-1, 1, -1).

Find the vector and Cartesian equation of the plane passing through points with position vectors $\vec{3i} + \vec{4j} + 2\vec{k}$, $2\vec{i} - 2\vec{j} - \vec{k}$ and $7\vec{i} + \vec{k}$
