Model Question Paper

Application of differentiation- II - Part II
12th Standard

Business Maths

Reg.No. \square
I.Answer all the questions.
II.Use Blue pen only.

Time : 01:00:00 Hrs

Section-A

1) If $u=e^{x^{2}+y^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to
(a) $y^{2} u$
(b) $x^{2} u$
(c) $2 x u$
(d) $2 y u$
2) If $u=\log \left(e^{x}+e^{y}\right)$ then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$ is equal to
(a) $\frac{1}{e^{x}+e^{y}}$
(b) $\frac{e^{x}}{e^{x}+e^{y}}$
(c) 1 (d) $e^{x}+e^{y}$
3) If $u=x^{y}(x>0)$ then $\frac{\partial u}{\partial y}$ is equal to
(a) $x^{y} \log x$
(b) $\log x$
(c) $y^{x} \log x$
(d) $\log y^{x}$
4) $f(x, y)=\frac{x^{\frac{1}{2}}+y^{\frac{1}{2}}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}$ i
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{6}$
(d) $\frac{1}{5}$

Section-B

5) Determine the value of ouput q at which the cost function $C=q^{2}-6 q+120$ is minimum.
6) Find the maximum and the minimum values of the function $x^{5}-5 x^{4}+5 x^{3}-1$. Discuss its nature at $x=0$.
7) Show that the function $f(x)=x^{2}+\frac{250}{x}$ has a minimum value at $x=5$

Section-C

$7 \times 10=70$
8) The total revenue (TR) for commodity x is $T R=12 x+\frac{x^{2}}{2}-\frac{x^{3}}{3}$. Show that at the highest point of average revenue (AR), AR=MR (where MR=Marginal Revenue).
9) A firm produces x units of output per week at a total cost of $R s$. $\left(\frac{1}{3} x^{3}-x^{2}+5 x+3\right)$. Find the level at which the marginal cost and the average variable cost attain their respective minimum.
10) It is known that in a mill the number of labourers x and the the total cost C are related by $C=\frac{3}{2(x-4)}+\frac{3}{32} x$. What value of x will minimise the cost?
11) $R=21 x-x^{2}$ and $C=\frac{x^{3}}{3}-3 x^{2}+9 x+16$ are respectively the sales revenue and cost function of x units sold. Find (i) At what output the revenue is maximum? What is the total revenue at this point ? (ii) What is the marginal cost at a minimum? (iii) What output will maximise the profit ?
12) A firm has revenue function $R=8 x$ and a production cost function $C=150000+60\left(\frac{x^{2}}{900}\right)$. Find the total profit function and the number of units to be sold to get the maximum profit.
13) A radio manufacturer finds that he can sell x radios per week at a Rs. p each, where $p=2\left(100-\frac{x}{4}\right)$.His cost of production of x radios per week is $R s$. ($120 x+\frac{x^{2}}{4}$). Show that his profit is maximum is when the production is 40 radios per week. Find also his maximum profit per week.
14) a) A certain manufacturing concern has the total cost function $C=\frac{1}{5} x^{2}-6 x+100$. Find when the total cost is minimum.
b) A firm produces an output of x tons of a certain product at a total cost given by $C=300 x-10 x^{2}+\frac{1}{3} x^{3}$. Find the output at which the average cost is least and the corresponding value of the average cost.

