Model Question Paper

Differential Calculus Part I - Part IV

12th Standard

Reg.No.

Maths I.Answer all questions. II.Use blue pen only. Time: 01:00:00 Hrs Total Marks : 85 Section-A 3 x 1 = 3 1) The parametric equations of the curve $x^{rac{2}{3}}+y^{rac{2}{3}}=a^{rac{2}{3}}$ are (a) $x = a \sin^3 \theta$; $y = a \cos^3 \theta$ (b) $x = a \cos^3 \theta$; $y = a \sin^3 \theta$ (c) $x = a^3 \sin \theta$; $y = a^3 \cos \theta$ (d) $x = a^3 \cos \theta$; $y = a^3 \sin \theta$ 2) Let "h" be the height of the tank. Then the rate of change of pressure "p" of the tank with respect to height is (a) $\frac{dh}{dt}$ (b) $\frac{dp}{dt}$ (c) $\frac{dh}{dp}$ (d) $\frac{dp}{dh}$ 3) If the temperature $\theta^o C$ of the certain metal rod of "L" meters is given by l = 1 + 0.00005 θ + 0.0000004 θ^2 then the rate of change of l in m / C ° when the temperature is 100°C is (a) 0.00013 m/C° (b) 0.00023 m/C° (c) 0.00026 m/C° (d) 0.00033 m/C° Section-B $9 \times 6 = 54$ 4) A Particle of unit mass moves so that displacement after t secs is given by x = 3cos(2t-4). Find the acceleration and kinetic energy at the end of 2 secs. $ig[K.\,E.=rac{1}{2}mv^2,m$ is mass] 5) Newton's law of cooling is given by $\theta = \theta_0^\circ e^{-kt}$, where the excess of temperature at zero time is $\theta_0^o C$ and time t seconds is $\theta^O C$. Determine the rate of change of temperature after 40s, given that $heta_0 = 16^\circ C$ and at time k=-0.03. $\left(e^{1.2} = 3.3201
ight)$ 6) Two sides of a triangle are 4m and 5m in length and the angle between them is increasing at a rate of 0.06 rad / sec. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\,\pi/3.$ 7) Show that $x^2 - y^2 = a^2$ and $xy = c^2$ cut orthogonally. 8) Find the equation of the tangent and normal to the curves $y = x^2 - 4x - 5$ at x= -2 9) Find the absolute maximum and absolute minimum values of f on the given interval: $f(x) = x - 2 \cos x$, 10) Prove the following inequalities : $\sin x > x - \frac{x^3}{6}, \quad x > 0$ 11) Prove the following inequalities : $tan^{-1}x < x$ for all x > 012) Prove the following inequalities : log(1 + x) < x for all x > 0Section-C $4 \times 10 = 40$ 13) A missile fired from ground level rises x metres vertically upwards in t seconds and $x = 100t - \frac{25}{2}t^2$. Find (i) the initial velocity of the missile, (ii) the time when the height of the missile is a maximum (iii) the maximum height reached and (iv) the velocity with which the missile strikes the ground. 14) The distance x metres traveled by a vehicle in time t seconds after the brakes are applied is given by : $x = 20t - 5/3t^2$. Determine (i) the speed of the vehicle (in km/hr) at the instant the brakes are applied and (ii) the distance the car traveled before it stops. 15) a) The altitude of a triangle is increasing at a rate of 1 cm / min while the area of the triangle is increasing at a rate of 2 cm² / min. At what rate is the base of the triangle

changing when the altitude is 10 cm and the area is 100 cm^2 .

(OR)

b) At noon, ship A is 100 km west of ship B. Ship A is sailing east at 35 km / hr and ship B is sailing north at 25 km hr. How fast is the distance between the ships changing at 4.00 p.m.