Model Question Paper
 Differential Calculus Part I - Part IV

12th Standard

Maths

Reg.No. \square

I.Answer all questions.

II.Use blue pen only.

Time : 01:00:00 Hrs

Section-A

1) The parametric equations of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ are
(a) $\mathrm{x}=\mathrm{a} \sin ^{3} \theta ; \mathrm{y}=\mathrm{a} \cos ^{3} \theta$
(b) $\mathrm{x}=\mathrm{a} \cos ^{3} \theta ; \mathrm{y}=\mathrm{a} \sin ^{3} \theta$
(c) $\mathrm{x}=a^{3} \sin \theta ; \mathrm{y}=a^{3} \cos \theta$
(d) $\mathrm{x}=a^{3} \cos \theta ; \mathrm{y}=a^{3} \sin \theta$
2) Let " h " be the height of the tank. Then the rate of change of pressure " p " of the tank with respect to height is
(a) $\frac{d h}{d t}$
(b) $\frac{d p}{d t}$
(c) $\frac{d h}{d p}$
(d) $\frac{d p}{d h}$
3) If the temperature $\theta^{\circ} C$ of the certain metal rod of " I " meters is given by $l=1+0.00005 \quad \theta+0.0000004 \quad \theta^{2}$ then the rate of change of I in $\mathrm{m} / \mathrm{C}^{\circ}$ when the temperature is $100^{\circ} \mathrm{C}$ is
(a) $0.00013 \mathrm{~m} / \mathrm{C}^{\circ}$
(b) $0.00023 \mathrm{~m} / \mathrm{C}^{\circ}$
(c) $0.00026 \mathrm{~m} / \mathrm{C}^{\circ}$
(d) $0.00033 \mathrm{~m} / \mathrm{C}^{\circ}$

Section-B

4) A Particle of unit mass moves so that displacement after t secs is given by $x=3 \cos (2 t-4)$.Find the acceleration and kinetic energy at the end of 2 secs. $\left[K . E .=\frac{1}{2} m v^{2}, m\right.$ is mass]
5) Newton's law of cooling is given by $\theta=\theta_{0}^{\circ} \quad e^{-k t}$, where the excess of temperature at zero time is $\theta_{0}^{\circ} C$ and time t seconds is $\theta^{\circ} C$. Determine the rate of change of temperature after 40 s , given that $\theta_{0}=16^{\circ} \mathrm{C}$ and at time $\mathrm{k}=-0.03 . \quad\left(e^{1.2}=3.3201\right)$
6) Two sides of a triangle are 4 m and 5 m in length and the angle between them is increasing at a rate of $0.06 \mathrm{rad} / \mathrm{sec}$. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\pi / 3$.
7) Show that $x^{2}-y^{2}=a^{2}$ and $x y=c^{2}$ cut orthogonally.
8) Find the equation of the tangent and normal to the curves $y=x^{2}-4 x-5$ at $\mathrm{x}=-2$
9) Find the absolute maximum and absolute minimum values of f on the given interval: $f(x)=x-2 \cos x, \quad[-\pi, \pi]$
10) Prove the following inequalities: $\sin x>x-\frac{x^{3}}{6}, \quad x>0$
11) Prove the following inequalities: $\tan ^{-1} x<x$ for all $x>0$
12) Prove the following inequalities: $\log (1+x)<x$ for all $x>0$
13) A missile fired from ground level rises x metres vertically upwards in t seconds and $x=100 t-\frac{25}{2} t^{2}$. Find (i) the initial velocity of the missile, (ii) the time when the height of the missile is a maximum (iii) the maximum height reached and (iv) the velocity with which the missile strikes the ground.
14) The distance x metres traveled by a vehicle in time t seconds after the brakes are applied is given by : $x=20 t-5 / 3 t^{2}$. Determine (i) the speed of the vehicle (in $\mathrm{km} / \mathrm{hr}$) at the instant the brakes are applied and (ii) the distance the car traveled before it stops.
15) a) The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$.

(OR)

b) At noon, ship A is 100 km west of ship B. Ship A is sailing east at $35 \mathrm{~km} / \mathrm{hr}$ and ship B is sailing north at 25 km hr. How fast is the distance between the ships changing at 4.00 p.m.

