Model Question Paper

Geometry - Part I

Maths
Reg.No.
I.Answer all the questions.
II.Use blue pen only.
III.Question number 15 is compulsory.

Time : 01:00:00 Hrs

1) If a straight line intersects the sides $A B$ and $A C$ of a $\triangle A B C$ at D and E respectively and is parallel to $B C$, then $\frac{A E}{A C}=$
(a) $\frac{A D}{D B}$
(b) $\frac{A D}{A B}$
(c) $\frac{D E}{B C}$
(d) $\frac{A D}{E C}$
2) In $\triangle A B C, D E$ is $\|$ to $B C$, meeting $A B$ and $A C$ at D and E. If $A D=3 \mathrm{~cm}, D B=2 \mathrm{~cm}$ and $A E=2.7 \mathrm{~cm}$, then $A C$ is equal to
(a) 6.5 cm
(b) 4.5 cm
(c) 3.5 cm
(d) 5.5 cm
3) In $\ln \triangle \mathrm{PQR}, \mathrm{RS}$ is the bisector of $<R$. If $\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=8 \mathrm{~cm}$,
$R P=4 \mathrm{~cm}$ then $P S$ is equal to

(a) 2 cm
(b) 4 cm
(c) 3 cm
(d) 6 cm
4)

In figure, if $\frac{A B}{A C}=\frac{B D}{D C},<B=40^{\circ}, \quad$ and $\quad<C=60^{\circ}$ then $<B A D=$

(a) 30°
(b) 50°
(c) 80°
(d) 40°
5)

$\begin{array}{ll}\text { (a) } 4 \cdot 2 & \text { (b) } 3 \cdot 2\end{array}$
(c) $0 \cdot 8$
(d) 0.4

Part-B

In $\triangle A B C, \quad D E \| B C$ and $\frac{A D}{D B}=\frac{2}{3}$. If $A E=3.7 \mathrm{~cm}$, Find EC.

Fig. 6.9
7)

In $\triangle P Q R$, given that S is a point on PQ such that $S T \| Q R$ and $\frac{P S}{S Q}=\frac{3}{5}$. If $\mathrm{PR}=5.6 \mathrm{~cm}$, then find PT .

Fig. 6.10

In $\triangle A B C$, the internal bisector AD of $\angle A$ meets the side BC at D . If $\mathrm{BD}=2.5 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=4.2 \mathrm{~cm}$, then find DC .

9)

Fig. 6.14
10) In a $\triangle A B C, D \quad A N D \quad E$ are points on the sides AB and AC respectively such that $D E \| B C$. If $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, then find AC .

Part-C

11)

In a $\triangle A B C, D \quad$ and $\quad E$ are points on AB and AC respectively such that $\frac{A D}{D B}=\frac{A E}{E C}$ and Prove that $\triangle A B C$ is isosceles.

Fig. 6.11
12)

The points D, E and F are taken on the sides AB, BC and CA of a $\triangle A B C$ respectively, such that $D E\|A C a n d F E\| A B$. prove that $\frac{A B}{A D}=\frac{A C}{F C}$.

13) D is the midpoint of the side BC of $\triangle A B C$. If P and Q are points on AB and on AC such that DP bisects $\angle B D A$ and DQ bisects $\angle A D C$ then prove that $P Q \| B C$.

Fig. 6.15
14)

In the figure, $A P=3 \mathrm{~cm}, A R=4.5 \mathrm{~cm}, A Q=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$, and $A C=10 \mathrm{~cm}$. Find the length of $A D$.

15) a) In the figure, $A C \| B D$ and $C E \| D F$. If $\mathrm{OA}=12 \mathrm{~cm}, \mathrm{AB}=9 \mathrm{~cm}$,

(OR)
b) $A B C D$ is a quadrilateral with $A B$ parallel to $C D$. A line drawn parallel to $A B$ meets $A D$ at P and $B C$ at Q. Prove that $\frac{A P}{P D}=\frac{B Q}{Q C}$.

