Model Question Paper

Application of differentiation- I - Part V

12th Standard

Business Maths

Reg.No. :

	Business Maths	Neg.110			
	I.Answer all the questions.				
	II.Use Blue pen only.				
Ti	me : 01:30:00 Hrs		То	otal Marl	ks : 120
	Section-A			4	4 x 1 = 4
1)	The tangent to the curve $y=2x^2-x+1$ at (1 , 2) is parllel to the line				
	(a) $y=3x$ (b) $y=2x+4$ (c) $2x+y+7=0$ (d) $y=5x-7$				
2)	The slope of the tangent to the curve $y=x^2-logx$ at $x=2$ is				
	(a) $\frac{7}{2}$ (b) $\frac{2}{7}$ (c) $-\frac{7}{2}$ (d) $-\frac{2}{7}$				
3)	The slope of the curve $x=y^2-6y$ at the point where it crosses the y axis is				
	(a) 5 (b) -5 (c) $\frac{1}{6}$ (d) $-\frac{1}{16}$				
4)	For the cost function $c=rac{1}{10}e^{2x}$,the marginal cost is				
	(a) $\frac{1}{10}$ (b) $\frac{1}{5}e^{2x}$ (c) $\frac{1}{10}e^{2x}$ (d) $\frac{1}{10}e^{x}$				
	Section-B			7:	x 6 = 42
5)	A demand function is given by xp ⁿ = k, where n and k are constants. Calculate price elasticity of demand.				
6)	Show that the elasticity of demand at all points on the curve $xy^2 = c$ (c is constant), where y represents price will be numerically equal	al to 2.			
7)	The demand curve for a monopolist is given by x = 100-4p				
	(i) Find the total revenue, average revenue and marginal				
	revenue.				
	(ii) At what value of x, the marginal revenue is equal to zero				
8)	The demand for a given commodity is $q = -60p + 480$, ($0) where p is the price. Find the elasticity of demand and marginal reve$	-			
9)	Find the slope of the curve $y = \frac{x^2 - 12}{x - 4}$, (x \neq 4) at the point (0, 3) and determine the points where the tangent is parallel to the axis of x	x.			
10) For the cost function y = $2x\left(\frac{x+4}{x+3}\right) + 3$, prove that the marginal cost falls continuously as the output x increases.				
11) Find the equilibrium price and equilibrium quantity for the following demand and supply functions $Q_d=4-0.06p$ and $Q_s=0.6p$	0+0.11p			
	Section-C			7 x	10 = 70
12) If $y = \frac{300}{x}$, find the average rate of change of y with respect to x when x increases from 10 to 10.5. Find also the instantaneous rate of	change of y at x =	10.		
) If the perimeter of a circle increases at a constant rate, prove that the rate of increase of the area varies as the radius of the circle.				
	$\frac{1}{2}$ Determine the values of l and m so that the curve, y = lx ² + 3x + m may pass through the point (0, 1) and have its tangent parallel to t	he x-axis at x = 0.7	5.		
15) Prove that for the cost function C = 100 + x + $2x^2$, where x is the output, the slope of AC curve = $\frac{1}{x}$ (MC-AC).				
	(MC is the marginal cost and AC is the average cost)				
16) Find the equations of the tangent and normal at the point ($a\cos heta,b\sin heta)$ on the ellipse $.rac{x^2}{a^2}+rac{y^2}{b^2}=1$				
17) Find the equation of the tangent and normal to the demand curve $y = 10-3x^2$ at (1, 7).				
18) Find the points on the curve y = (x-1) (x-2) at which the tangent makes an angle 1350 with the positive direction of the x-axis.				
18) Find the points on the curve $y = (x-1)(x-2)$ at which the tangent makes an angle 1350 with the positive direction of the x-axis.				

##