Model Question Paper

Application of differentiation-I - Part V

12th Standard

Business Maths

Reg.No. \square
I.Answer all the questions.
II.Use Blue pen only.

Time : 01:30:00 Hrs

Section-A

1) The tangent to the curve $y=2 x^{2}-x+1$ at $(1,2)$ is parllel to the line
(a) $y=3 x$
(b) $y=2 x+4$
(c) $2 x+y+7=0$
(d) $y=5 x-7$
2) The slope of the tangent to the curve $y=x^{2}-\log x$ at $x=2$ is
(a) $\frac{7}{2}$
(b) $\frac{2}{7}$
(c) $-\frac{7}{2}$
(d) $-\frac{2}{7}$
3) The slope of the curve $x=y^{2}-6 y$ at the point where it crosses the y axis is
$\begin{array}{lll}\text { (a) } 5 & \text { (b) }-5 & \text { (c) } \frac{1}{6}\end{array}$
(d) $-\frac{1}{16}$
4) For the cost function $c=\frac{1}{10} e^{2 x}$,the marginal cost is
(a) $\frac{1}{10}$
(b) $\frac{1}{5} e^{2 x}$
(c) $\frac{1}{10} e^{2 x}$
(d) $\frac{1}{10} e^{x}$

Section-B

5) A demand function is given by $x p^{n}=k$, where n and k are constants. Calculate price elasticity of demand.
6) Show that the elasticity of demand at all points on the curve $x y^{2}=c$ (c is constant), where y represents price will be numerically equal to 2 .
7) The demand curve for a monopolist is given by $x=100-4 p$
(i) Find the total revenue, average revenue and marginal revenue.
(ii) At what value of x, the marginal revenue is equal to zero
8) The demand for a given commodity is $q=-60 p+480,(0<p<7)$ where p is the price. Find the elasticity of demand and marginal revenue when $p=6$.
9) Find the slope of the curve $y=\frac{x^{2}-12}{x-4},(x \neq 4)$ at the point $(0,3)$ and determine the points where the tangent is parallel to the axis of x .
10) For the cost function $\mathrm{y}=2 x\left(\frac{x+4}{x+3}\right)+3$, prove that the marginal cost falls continuously as the output x increases.
11) Find the equilibrium price and equilibrium quantity for the following demand and supply functions $Q_{d}=4-0.06 p$ and $Q_{s}=0.6+0.11 p$

Section-C

12) If $y=\frac{300}{x}$, find the average rate of change of y with respect to x when x increases from 10 to 10.5 . Find also the instantaneous rate of change of y at $x=10$.
13) If the perimeter of a circle increases at a constant rate, prove that the rate of increase of the area varies as the radius of the circle.
14) Determine the values of I and m so that the curve, $y=l x^{2}+3 x+m$ may pass through the point $(0,1)$ and have its tangent parallel to the x-axis at $x=0.75$.
15) Prove that for the cost function $C=100+x+2 x^{2}$, where x is the output, the slope of $A C$ curve $=\frac{1}{x}(M C-A C)$.
(MC is the marginal cost and $A C$ is the average cost)
16) Find the equations of the tangent and normal at the point $(a \cos \theta, b \sin \theta)$ on the ellipse $\cdot \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
17) Find the equation of the tangent and normal to the demand curve $y=10-3 x^{2}$ at (1,7).
18) Find the points on the curve $y=(x-1)(x-2)$ at which the tangent makes an angle 1350 with the positive direction of the x-axis.
