Model Question Paper

Differetial Calculus Part II- Part I

12th Standard

Maths	Reg.No.:			

I.Answer all questions.

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 85 $3 \times 1 = 3$

Section-A

1) If $u=x^y$ then $\frac{\eth u}{\partial x}$ is equal to

(a) yx^{y-1} (b) $u\log x$ (c) $u\log y$ (d) xy^{x-1}

2) If $u=\sin^{-1}\left(\frac{x^4+y^4}{x^2+y^2}\right)$ and $f=\sin u$ then f is a homogeneous function of degree

(a) 0 (b) 1 (c) 2 (d) 4 $3) \quad \text{If } u=\frac{1}{\sqrt{x^2+y^2}} \text{ , then } x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y} \text{ is equal to}$

(a) $\frac{1}{2}u$ (b) u (c) $\frac{3}{2}u$ (d) -u

Section-B $3 \times 3 = 9$

- 4) Find the differential dy and evaluate dy for the given values of x and dx: $y=1-x^2$, x=5, $dx=\frac{1}{2}$
- $u=\sqrt{x^2+y^2}$, show that $xrac{\partial u}{\partial x}+yrac{\partial u}{\partial y}=u$
- 6) The radius of a sphere was measured and found to be 21 cm with a possible error in measurement of atmost 0.05cm. What is the maximum error in using this value of the radius to compute the volume of the sphere?

Section-C 5 x 6 = 30

- 7) Use differentials to find an approximate value for the given number $(1.97)^6$
- The edge of a cube was found to be 30cm with a possible error in measurement of 0.1cm. Use differentials to estimate the maximum possible error in computing the
- The radius of a circular disc is given as 24cm with a maximum error in measurement of 0.02cm. Use differentials to estimate the maximum error in the calculated area of
- 10) Suppose that $z = ye^{x^2}$ where x = 2t and y = 1 t then find $\frac{dz}{dt}$
- 11) If $w = x + 2y + z^2$ and x = cost; y = sint; z = t Find $\frac{dw}{dt}$

5 x 10 = 50

- 12) Trace the curve $y=x^3+1$
- 13) Trace the curve $y^2=2x^3$
- 14) If $w=u^2e^v$ where $u=\frac{x}{y}$ and v=ylog x, find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$
- 15) a) Using Euler's theorem, prove that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\frac{1}{2}tan\ u$, if $u=sin^{-1}(-1)$

(OR)

b) Verify $rac{\partial^2 u}{\partial x \partial y} = rac{\partial^2 u}{\partial y \partial x}$ for $u = rac{x}{y^2} - rac{y}{x^2}$
