Model Question Paper

Matrices and Determinants - Part II

12th Standard

	Maths	Reg.No.:			
wer all the Questions					

I.Ansv II.use blue pen only.

Time: 01:00:00 Hrs Total Marks: 78

5 x 1 = 5

Section-A

1) If A is a scalar matrix with scalar $k \neq 0$, of order 3, then A^{-1} is

(a)
$$\frac{1}{k^2}I$$
 (b) $\frac{1}{k^3}I$ (c) $\frac{1}{k}I$ (d) KI

(a) $\frac{1}{k^2}I$ (b) $\frac{1}{k^3}I$ (c) $\frac{1}{k}I$ (d) KI If the matrix $\begin{pmatrix} -1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5 \end{pmatrix}$ has an inverse then the values of k

(a) k is any real number (b) k = -4 (c)
$$k \neq -4$$
 (d) $k \neq 4$

3) If
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
, then (adjA) $A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$

(a)
$$\begin{pmatrix} 1 & 4 \\ \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 5 & 0 \\ 0 & -5 \end{pmatrix}$ (d) $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$

4) If A is a square matrix of order n then |adjA| is

(a)
$$|A|^2$$
 (b) $|A|^n$ (c) $|A|^{n-1}$ (d) $|A|$

(a)
$$|A|$$
 (b) $|A|$ (c) $|A|$ (d)

5)
The inverse of the matrix $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ is

(a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

 $3 \times 3 = 9$

6) Find the inverse of the following matrices:
$$\begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix}$$

6) Find the inverse of the following matrices:
$$\begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix}$$
7) Find the rank of the matrix
$$\begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix}$$

 $4 \times 6 = 24$ Solve the following non-homogeneous system of linear equations by determinant method: 4x + 5y = 9; 8x + 10y = 18

10) Examine the consistency of the following system of equations. If it is consistent then solve the same. x + y + z = 7; x + 2y + 3z = 18; y + 2z = 611)

Find the adjoint of the matrix
$$A=\begin{bmatrix}1&1&1\\1&2&-3\\2&-1&3\end{bmatrix}$$
 If $A=\begin{bmatrix}-1&2\\1&-4\end{bmatrix}$, verify the result $A(adjA)=(adjA)A=|A|I_2$

Solve: x + y + 2z = 0; 2x + y - z = 0; 2x + 2y + z = 0

Section-D 3 x 10 = 30

- 13) Solve by matrix inversion method each of the following system of linear equations: 2x-y+z=7, 3x+y-5z=13, x+y+z=5
- 14) Solve the following non-homogeneous system of linear equations determinant method: x+y+z=4; x-y+z=2; 2x+y-z=1
- Solve the following non-homogeneous system of linear equations determinant method: 2x + y z = 4; x + y 2z = 0; 3x + 2y 3z = 415) a)
 - Solve the following non-homogeneous system of linear equations determinant method: 3x + y z = 2; 2x y + 2z = 6; 2x + y 2z = -2
