Model Question Paper

Differential Calculus Part I - Part II

12th Standard

	Maths	Reg.No. :
I.Answer all questions.		
II.Use blue pen only.		
Time : 01:00:00 Hrs		Total Marks : 100
Section-A		3 x 1 = 3
1) A spherical snowball is melting in such a way that its volume is decreasing at	a rate of $1 cm^3$ /min. The rate at which the diameter	er is decreasing when the diameter is 10cms
is (a) $\frac{-1}{50\pi}$ cm/min (b) $\frac{1}{50\pi}$ cm/min (c) $\frac{-11}{75\pi}$ cm/min (d) $\frac{-2}{75\pi}$ cm/m	in .	
2) The slope of the tangent to the curve $y = 3x^2 + 3\sin x$ at x = 0 is		
(a) 3 (b) 2 (c) 1 (d) -1		
3) The slope of the normal to the curve $y = 3x^2$ at the point whose x coordinat	e is 2 is	
(a) 1/13 (b) 1/14 (c) -1/12 (d) 1/12		
Section-B		6 x 3 = 18
4) Obtain the Maclaurin's Series expansion for: e^{2x}		
5) Evaluate: $\lim_{x \to \infty} \frac{x^2}{e^x}$		
6) Evaluate the limit for the following if exists. $\lim_{x \to \infty} \frac{\log_e x}{x}$		
7) Prove that e^x is strictly increasing function on R.		
8) Prove that log x is strictly increasing function on $(0,\infty)$		
9) Which of the following functions are increasing or decreasing on the interval given e^{-x} on $[0,1]$		
Section-C	1 1 62	4 x 6 = 24
10) Apply Rolle's theorem to find points on curve $y = -1 + \cos x$, where the tangent is parallel to x – axis in $[0, 2\pi]$.		
11) Verify Lagrange's law of the mean for $f\left(x ight)=x^{3}$ on $\left[-2,2 ight]$		
12) A cylindrical hole 4mm in diameter and 12 mm deep in a metal block is rebo		ne amount of metal removed.
13) Suppose that $f\left(0 ight)=-3$ and $f'\left(x ight)\leq 5$ for all values of x, how large can	f (2) possibly be?	
Section-D		3 x 10 = 30
14) Prove that the sum of the intercepts on the co-ordinate axes of any tangent t		is equal to a.
15) a) Find the absolute maximum and absolute minimum values of $f(x)$ =		
b) Find the local minimum and maximum values of $f(x) = x^4 - 3x^3 + 3x^3$	(OR)	
b) Find the local minimum and maximum values of $f(x) = x^4 - 3x^3 + 3x^2 - x$.		

No.		