Unit 1 to 5 Five Marks Question With Answer

12th Standard

Physics

1) Consider a point charge $+q$ placed at the origin and another point charge $-2 q$ placed at a distance of 9 m from the charge +q . Determine the point between the two charges at which electric potential is zero.
Answer: According to the superposition principle, the total electric potential at a point is equal to the sum of the potentials due to each charge at that point.
Consider the point at which the total potential zero is located at a distance x from the charge +q as shown in the figure.

The total electric potential at P is zero.
Vtot $=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{x}-\frac{2 q}{(9-x)}\right)=0$
Which gives $\frac{q}{x}-\frac{2 q}{(9-x)}$
or $\frac{1}{x}=\frac{2}{(9-x)}$
Hence, $x=3 m$
2) A parallel plate capacitor has square plates of side 5 cm and separated by a distance of 1 mm .
(a) Calculate the capacitance of this capacitor.
(b) If a 10 V battery is connected to the capacitor, what is the charge stored in any one of the plates? (The value of $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Nm}^{2} \mathrm{C}^{-2}$)
Answer : (a) The capacitance of the capacitor is
$\mathrm{C}=\frac{\varepsilon_{0} A}{d}=\frac{8.85 \times 10^{-12} \times 25 \times 10^{-4}}{1 \times 10^{-3}}$
$=221.2 \times 10^{-13} \mathrm{~F}$
$\mathrm{C}=22.12 \times 10^{-12} \mathrm{~F}=22.12 \mathrm{pF}$
(b) The charge stored in any one of the plates is $\mathrm{Q}=\mathrm{CV}$, Then
$\mathrm{Q}=22.12 \times 10^{-12} \times 10=221.2 \times 10^{-12} \mathrm{C}=221.2 \mathrm{pC}$
3) For the given capacitor configuration
(a) Find the charges on each capacitor
(b) potential difference across them
(c) energy stored in each capacitor

Answer :

B \& C are parallel so $C=(6+2) \mu \mathrm{F}=8 \mu \mathrm{~F}$ Now all a, b \& c, d are in series.
Effectivecapacitance $\frac{1}{C_{s}}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} \quad \therefore C_{s}=\frac{8}{3}$
a. Charges on each capacitor:

Total charges on capacitor $=\mathrm{q}=\mathrm{C}$.
$V=\frac{1}{8} \times 9 \times 10-6=24 \mu=C$
Charge on capacitor $\mathrm{a}=\mathrm{q}_{\mathrm{a}}=$ C.V.
$q_{\mathrm{a}}=24 \mu \mathrm{C}$
In case of capacitor in series the charge flowing through capacitor is same.
$\mathrm{q}_{\mathrm{a}}=\mathrm{q}_{\mathrm{d}}=24 \mu \mathrm{C}$
But across b \& c, the charge is not same total are in parallel.
Charge on $\mathrm{b}=\mathrm{qb}=\frac{6}{3} \times 9 \times 10^{-6}$
$=18 \mu \mathrm{C}$
Charge on $\mathrm{c}=\mathrm{qc}=\frac{2}{3} \times 9 \times 10^{-6}$
$=6 \mu \mathrm{C}$
b. Potential difference across capacitor a
$V_{a}=\frac{q_{a}}{C_{a}}=\frac{24 \times 10^{-6}}{8 \times 10^{-6}}=3 \mathrm{~V}$
Potential difference across capacitor b
$V_{b}=\frac{q_{b}}{C_{b}}=\frac{18 \times 10^{-6}}{6 \times 10^{-6}}=3 \mathrm{~V}$
Potential difference across capacitor c
$V_{c}=\frac{q_{c}}{C_{c}}=\frac{6 \times 10^{-6}}{2 \times 10^{-6}}=3 \mathrm{~V}$
Potential difference across capacitor d
$V_{d}=\frac{q_{d}}{C_{d}}=\frac{24 \times 10^{-6}}{8 \times 10^{-6}}=3 \mathrm{~V}$
c. Energy stored in a $\mathrm{Ua} \mathrm{U}_{\mathrm{a}}=\frac{1}{2} \mathrm{CV}^{2}$
$\mathrm{U}_{\mathrm{a}}=\frac{1}{2} \mathrm{x} 8 \times 10-6 \times 3 \times 3=36 \mu \mathrm{~J}$
Energy stored in b
$\mathrm{U}_{\mathrm{b}}=\frac{1}{2} \mathrm{x} 6 \times 3 \times 3 \times 10^{-6}=27 \mu \mathrm{~J}$
$\left[C_{b}=6 \mu \mathrm{~F}\right]$
Energy stored in c
$\mathrm{U}_{\mathrm{c}}=\frac{1}{2} \times 2 \times 3 \times 3 \times 10-6=9 \mu \mathrm{~J}$
$\left[\mathrm{C}_{\mathrm{c}}=2 \mu \mathrm{~F}\right.$]
4) From the given circuit

Find
i) Equivalent emf
ii) Equivalent internal resistance
iii) Total current (I)
iv) Potential difference across each cell
v) Current from each cell

Answer : i) Equivalent emf $\xi_{\text {eq }}=5 \mathrm{~V}$
ii) Equivalent internal resistance, $R_{e q}=\frac{r}{n}=\frac{0.5}{4}=0.125 \Omega$
iii) total current, $I=\frac{\xi}{R_{5}+\frac{r}{n}}$
$I=\frac{5}{10+0.125}=\frac{5}{10.125}$
I $\approx 0.5 \mathrm{~A}$
iv) Potential difference across each cell
$\mathrm{V}=\mathrm{IR}=0.5 \times 10=5 \mathrm{~V}$
v) Current from each cell, $I^{\prime}=\frac{I}{n}$
$I^{\prime}=\frac{0.5}{4}=0.125 \mathrm{~A}$
5) Find the heat energy produced in a resistance of 10Ω when 5 A current flows through it for 5 minutes.
Answer: $\mathrm{R}=10 \Omega, \mathrm{I}=5 \mathrm{~A}, \mathrm{t}=5$ minutes $=5 \times 60 \mathrm{~s}$
$\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}$
$=5^{2} \times 10 \times 5 \times 60$
$=25 \times 10 \times 300$
$=25 \times 3000$
$=75000 \mathrm{~J}$ (or) 75 kJ
6) A potentiometer wire has a length of 4 m and resistance of 20Ω. It is connected in series with resistance of 2980Ω and a cell of emf 4 V . Calculate the potential along the wire.
Answer : :The length of the potential wire $1=4 \mathrm{~m}$

Resistors of the potential $r=20 \Omega$
Resistor connected $R=2980 \Omega$
emf of the cell $\mathrm{E}=4 \mathrm{~V}$
To find:
potential along wire $\mathrm{V}=$?
Effective resistor $=r$ \& R are connected in series
$=2980+20=(r+R)$
$=3000 \Omega$
Current flowing through the wire $I=\frac{\xi}{R}$

$$
I=\frac{4}{3000}
$$

Potential drop acress the wire V = I x r

$$
V=\frac{4}{3000} \times 20=\frac{8}{300} \text { volt }
$$

Potentialgradient $=\frac{\text { Potential drop }}{\text { length }} \frac{V}{l}$
$=\frac{8}{300} \times \frac{1}{4}=\frac{2}{300}=0.66 \times 10^{-2} \mathrm{Vm}^{-1}$
Potential gradient $=0.66 \times 10^{-2} \mathrm{~V} \mathrm{~m}^{-1}$
7) Two cells each of 5 V are connected in series across a 8Ω resistor and three parallel resistors of $4 \Omega, 6 \Omega$ and 12Ω. Draw a circuit diagram for the above arrangement.
Calculate i) the current drawn from the cell (ii) current through each resistor
Answer : Equivalent resistors of R'of 4, 6. 12 resistors connected in parallel is given by

$\frac{1}{R^{\prime}}=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$
Resistor of parallel combination $\mathrm{R}^{\prime}=2 \Omega$
Total resistor i.e. 8Ω is connected in series with R^{\prime}
$R_{S}=8+R^{\prime}$
$R_{2}=8+2=10 \Omega$
$\therefore R_{S}=10 \Omega$
Net voltage (emf) $\mathrm{V}=10[\because$ cells are connected in series total emf $\varepsilon+\varepsilon=2 \varepsilon$
Circuit in through circuit $I=\frac{V}{R}$ (from ohm's law)
$I=\frac{10}{10} ; I=1 A$
So the circuit through each cell and 80 resistor is 1 A .
Potential drop across the parallel combination of three resistors is $\mathrm{V}^{\prime}=\mathrm{I} \mathrm{R}^{\prime}=1 \times 2=$ 2 V
$\therefore{ }^{\text {Current in } 4}{ }_{\Omega}{ }^{\text {resistor }} I=\frac{2}{4}=0.5 A\left[I=\frac{V}{R}\right]$
Current in $6{ }_{\Omega}$ resistor, $I=\frac{2}{6}=0.33 A$
Current in 12 resistor, $I=\frac{2}{12}=\frac{1}{6}=0.17 A$
8) An electron moving perpendicular to a uniform magnetic field 0.500 T undergoes circular motion of radius 2.80 mm . What is the speed of electron?
Answer : Charge of an electron $\mathrm{q}=-1.60 \times 10^{-19} \mathrm{C} \Rightarrow|q|=1.60 \times 10^{-19} c$
Magnitude of magnetic field $\mathrm{B}=0.500 \mathrm{~T}$
Mass of the electron, $\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$
Radius of the orbit, $\mathrm{r}=2.50 \mathrm{~mm}=2.50 \times 10^{-3} \mathrm{~m}$
Velocity of the electron, $\mathrm{v}=|q| \frac{r B}{m}$
$\mathrm{v}=1.60 \times 10-19=\frac{2.50 \times 10^{-3} \times 0.500}{9.11 \times 10^{-31}}$
$\mathrm{v}=2.195 \times 10^{8} \mathrm{~ms}^{-1}$
9) mass of 100 g and radius 20 cm . A flat compact coil of wire with turns 5 is wrapped tightly around it with each turns concentric with the sphere. This sphere is placed on an inclined plane such that plane of coil is parallel to the inclined plane. A uniform magnetic field of 0.5 T exists in the region in vertically upward direction. Compute the current I required to rest the sphere in equilibrium.

Answer : The sphere is in translational equilibrium, thus
$\mathrm{f}_{\mathrm{s}}-\mathrm{mg} \sin \theta=0$
The sphere is in rotational equilibrium. If torques are taken about the centre of the sphere, the magnetic field produces a clockwise torque of magnitude
i.e $T=m B \sin \theta[\mu=N I A]$

The frictional force (f_{s}) produces a anticlockwise torque of magnitude $\tau=f_{\mathrm{s}} R$, where R is the radius of the sphere. Thus
$\mathrm{fsR}-\mathrm{mB} \sin \theta=0$
From (1) and (2) [i.e $\mathrm{f}_{\mathrm{s}}=\mathrm{mg} \sin \theta$ substituting in (2)]
$m g \sin \theta R-\mu B \sin \theta m g R=\mu B$
Substituting μ
$\mathrm{mgR}=$ NIAB
$\mathrm{I}=\frac{m g R}{N B A}$ [where A is the area of the sphere $\mathrm{A}=\Pi \mathrm{R} 2$]
$\therefore \mathrm{I}=\frac{m g}{\pi R B N}$
Given:
mass ofthe sphere $\mu=100 \mathrm{~g}=100 \times 10^{-3} \mathrm{~kg}$
Radius of the sphere $\mathrm{R}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
No. of turns of wire wrapped $N=5$
Magnetic field $B=0.5 \mathrm{~T}$
Current required to rest the sphere in equilibrium
$I=\frac{100 \times 10^{-3} \times 10^{2}}{\pi \times \$ \times 20 \times 10^{-2} \times 0.5}$
$\mathrm{I}=\frac{2}{\pi}$.
10) A coil of 200 turns carries a current of 4 A . If the magnetic flux through the coil is 6 $\times 10^{-5} \mathrm{~Wb}$, find the magnetic energy stored in the medium surrounding the coil.
Answer : Given: No. of turns of coil $\mathrm{N}=200$
Current passing through coil $\mathrm{I}=4 \mathrm{~A}$
Magnetic flux through coil $\Phi=6 \times 10^{-5} \mathrm{~Wb}$
To find:
Magnetic energy stored in the medium surrounding the coil $=\frac{1}{2} \mathrm{LI}^{2}$
Self inductance $\mathrm{L}=\frac{N \Phi}{I}$
Solution:
\therefore energy UB $=\frac{1}{2}$.NФ. I
$=\frac{1}{2} \times 200 \times 6 \times 10^{-5} \times 4$
$=24 \times 10^{-3}$

