Unit 1 to 5 Five Marks Question With Answer

12th Standard

Physics

1) Consider a point charge +q placed at the origin and another point charge -2q placed at a distance of 9 m from the charge +q. Determine the point between the two charges at which electric potential is zero.

Answer : According to the superposition principle, the total electric potential at a point is equal to the sum of the potentials due to each charge at that point. Consider the point at which the total potential zero is located at a distance x from the charge +q as shown in the figure.

$$+$$
 p $-2q$

The total electric potential at P is zero.

Vtot =
$$\frac{1}{4\pi\varepsilon_0} \left(\frac{q}{x} - \frac{2q}{(9-x)} \right) = 0$$

Which gives $\frac{q}{x} - \frac{2q}{(9-x)}$
or $\frac{1}{x} = \frac{2}{(9-x)}$
Hence, x=3m

- 2) A parallel plate capacitor has square plates of side 5 cm and separated by a distance of 1 mm.
 - (a) Calculate the cap<mark>acitance of this</mark> capacitor.

(b) If a 10 V battery is connected to the capacitor, what is the charge stored in any one of the plates? (The value of $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Nm}^2 \text{ C}^{-2}$)

Answer: (a) The capacitance of the capacitor is

 $C = \frac{\varepsilon_0 A}{d} = \frac{8.85 \times 10^{-12} \times 25 \times 10^{-4}}{1 \times 10^{-3}}$ =221.2 x 10⁻¹³ F C=22.12 x 10⁻¹²F = 22.12pF (b) The charge stored in any one of the plates is Q = CV, Then Q=22.12 x 10⁻¹² x 10 =221.2 x 10⁻¹²C=221.2 pC 3) For the given capacitor configuration

- (a) Find the charges on each capacitor
 - (b) potential difference across them

QB365

(c) energy stored in each capacitor

B & C are parallel so C = (6 +2) μ F = 8 μ F Now all a, b & c, d are in series. Effectivecapacitance $\frac{1}{C_s} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$ $\therefore C_s = \frac{8}{3}$

a. Charges on each capacitor:

Total charges on capacitor = q = C.

 $V = \frac{1}{8} x9x10-6=24\mu=C$

Charge on capacitor $a = q_a = C.V.$

 q_a = 24 μ C

In case of capacitor in series the charge flowing through capacitor is same.

But across b & c, the charge is not same total are in parallel.

Charge on b=qb= $\frac{6}{3}$ x9x10⁻⁶

=18µC

Charge on c=
$$qc=\frac{2}{3}x9x10^{-6}$$

=6µC

b. Potential difference across capacitor a

 $V_{a} = \frac{q_{a}}{C_{a}} = \frac{24 \times 10^{-6}}{8 \times 10^{-6}} = 3V$ Potential difference across capacitor b $V_{b} = \frac{q_{b}}{C_{b}} = \frac{18 \times 10^{-6}}{6 \times 10^{-6}} = 3V$ Potential difference across capacitor c $V_{c} = \frac{q_{c}}{C_{c}} = \frac{6 \times 10^{-6}}{2 \times 10^{-6}} = 3V$ Potential difference across capacitor d $V_{d} = \frac{q_{d}}{C_{d}} = \frac{24 \times 10^{-6}}{8 \times 10^{-6}} = 3V$ c. Energy stored in a Ua $U_{a} = \frac{1}{2}$ CV² $U_{a} = \frac{1}{2}$ x8 X 10-6 X 3 X 3 = 36 µJ Energy stored in b $U_{b} = \frac{1}{2}$ x6 X 3 X 3 X 10⁻⁶ = 27 µJ [C_{b} = 6µF] Energy stored in c $U_{c} = \frac{1}{2}$ x2 x 3 x 3 X 10-6 = 9 µJ [C_{c} = 2µF] 4) From the given circuit

Find

- i) Equivalent emf
- ii) Equivalent internal resistance
- iii) Total current (I)
- iv) Potential difference across each cell
- v) Current from each cell

Answer: i) Equivalent emf $\xi_{eq} = 5 V$

ii) Equivalent internal resistance,

 $R_{eq}=rac{r}{n}=rac{0.5}{4}=0.125\Omega$

iii) total current,
$$I = -$$

 $I=rac{5}{10+0.125}=$

iv) Potential difference across each cell

$$V = IR = 0.5 \times 10 = 5 V$$

v) Current from each cell, $I' = \frac{I}{n}$

10.125

$$I' = rac{0.5}{4} = 0.125 A$$

5) Find the heat energy produced in a resistance of 10 Ω when 5 A current flows through it for 5 minutes.

Answer : $R = 10 \Omega$, I = 5 A, $t = 5 minutes = 5 \times 60 s$

 $H = I^2 R t$

 $= 5^2 \times 10 \times 5 \times 60$

- = 25 × 10 × 300
- = 25 × 3000

6) A potentiometer wire has a length of 4 m and resistance of 20 Ω . It is connected in series with resistance of 2980 Ω and a cell of emf 4 V. Calculate the potential along the wire.

Answer : :The length of the potential wire 1= 4 m

https://www.qb365.in/materials/

QB365

Resistors of the potential $r = 20\Omega$ Resistor connected $R = 2980\Omega$ emf of the cell E =4V To find: potential along wire V = ? Effective resistor = r & R are connected in series = 2980 + 20 = (r + R) = 3000 Ω Current flowing through the wire $I = \frac{\xi}{R}$ $I = \frac{4}{3000}$ Potential drop acress the wire V = I x r $V = \frac{4}{3000} \times 20 = \frac{8}{300} volt$ Potential gradient = $\frac{Potential \ drop}{length} \frac{V}{l}$ = $\frac{8}{300} \times \frac{1}{4} = \frac{2}{300} = 0.66 \times 10^{-2} V m^{-1}$ Potential gradient = 0.66 x 10⁻² V m^{-1}

7) Two cells each of 5V are connected in series across a 8 Ω resistor and three parallel resistors of 4 Ω , 6 Ω and 12 Ω . Draw a circuit diagram for the above arrangement. Calculate i) the current drawn from the cell (ii) current through each resistor **Answer :** Equivalent resistors of R'of 4, 6. 12 resistors connected in parallel is given by

$$\frac{1}{R^{'}} = \frac{1}{4} + \frac{1}{6} + \frac{1}{12}$$

Resistor of parallel combination R'=2 Ω

Total resistor i.e.8 Ω is connected in series with R'

$$egin{aligned} R_{S} &= 8 + R^{'} \ R_{2} &= 8 + 2 = 10 \Omega \ dots \; R_{S} &= 10 \Omega \end{aligned}$$

Net voltage (emf) V = 10 [:: cells are connected in series total emf $\varepsilon + \varepsilon = 2\varepsilon$ Circuit in through circuit V_{-} (from ohm's law)

$$=\overline{R}$$

$$I=rac{10}{10};I=1A$$

So the circuit through each cell and 80 resistor is IA.

Potential drop across the parallel combination of three resistors is V' = I R' = 1 x 2 = 2 V

$$\therefore \frac{\text{Current in 4}}{\Omega} \frac{\text{resistor}}{I = \frac{2}{4}} = 0.5A \left[I = \frac{V}{R} \right]$$

$$\frac{\text{Current in 6}}{\Omega} \frac{\text{resistor}}{I = \frac{2}{6}} = 0.33A$$

$$\frac{\text{Current in 12 resistor}}{I = \frac{2}{12}} = \frac{1}{6} = 0.17A$$

8) An electron moving perpendicular to a uniform magnetic field 0.500 T undergoes circular motion of radius 2.80 mm. What is the speed of electron?

Answer : Charge of an electron q = -1.60 × 10⁻¹⁹ C \Rightarrow $|q| = 1.60 \times 10^{-19} c$

Magnitude of magnetic field B = 0.500 T Mass of the electron, m = 9.11 × 10⁻³¹ kg Radius of the orbit, r = 2.50 mm = 2.50 × 10⁻³ m Velocity of the electron, v = $|q| \frac{rB}{m}$ v=1.60x10-19= $\frac{2.50 \times 10^{-3} \times 0.500}{9.11 \times 10^{-31}}$ v=2.195x10⁸ms⁻¹

9) mass of 100 g and radius 20 cm. A flat compact coil of wire with turns 5 is wrapped tightly around it with each turns concentric with the sphere. This sphere is placed on an inclined plane such that plane of coil is parallel to the inclined plane. A uniform magnetic field of 0.5 T exists in the region in vertically upward direction. Compute the current I required to rest the sphere in equilibrium.

Answer : The sphere is in translational equilibrium, thus

 $f_s - mg \sin\theta = 0$...(1)

The sphere is in rotational equilibrium. If torques are taken about the centre of the sphere, the magnetic field produces a clockwise torque of magnitude

i.e $T = mB \sin\theta [\mu = NIA]$

The frictional force (f_s) produces a anticlockwise torque of magnitude $T = f_s R$, where R is the radius of the sphere. Thus

 $fsR - mB sin\theta = 0$ (2)

From (1) and (2) [i.e $f_s = mg \sin\theta$ substituting in (2)]

QB365

```
mg sin\theta R - \muB sin\theta mg R =\muB
   Substituting µ
   mgR =NIAB
   I=\underline{mgR} [where A is the area of the sphere A=\pi R^2]
   \therefore \mathbf{I} = \frac{mg}{\pi RBN}
   Given:
   mass of the sphere \mu = 100g = 100 \times 10^{-3} \text{ kg}
   Radius of the sphere R = 20 cm = 20 \times 10^{-2}m
   No. of turns of wire wrapped N = 5
   Magnetic field B = 0.5 T
   Current required to rest the sphere in equilibrium
           \frac{100 \times 10^{-3} \times 10^{2}}{\pi \times \cancel{5} \times 20 \times 10^{-2} \times 0.5}
   Ι
   I=\frac{2}{\pi}.
10) A coil of 200 turns carries a current of 4 A. If the magnetic flux through the coil is 6
   x 10^{-5} Wb, find the magnetic energy stored in the medium surrounding the coil.
   Answer : Given: No. of turns of coil N= 200
   Current passing through coil I = 4A
   Magnetic flux through coil \Phi= 6 x 10<sup>-5</sup> Wb
   To find:
   Magnetic energy stored in the medium surrounding the coil = \frac{1}{2}LI^2
   Self inductance L = \frac{N\Phi}{I}
   Solution:
   \therefore energy UB = \frac{1}{2}.N\Phi.I
   =\frac{1}{2} \times 200 \times 6 \times 10^{-5} \times 4
   =24 \times 10^{-3}
```