Volume 1 - One Mark Questions with Answer Key

12th Standard

Chemistry

1)	Which one of the following reaction represents calcinations? (a) (b) (c) $2Zn+O_2\to 2ZnO \ 2ZnS+3O_2\to 2ZnS+3O_2\to 2ZnO+2SO_2 \ MgCO_3\to MgO+CO_2$	(d) Both (a) and			
	(c) Which one of the following ores is best concentrated by froth – floatation method? (a) Magnetite (b) Hematite (c) Galena (d) Cassiterite Extraction of gold and silver involves leaching with cyanide ion. silver is later recovered by (NEET-2017)				
4)	(a) Distillation (b) Zone refining (c) Displacement with zinc (d) liquation The following set of reactions are used in refining Zirconium $(impure) + 2I_2 \stackrel{523k}{\longrightarrow} ZrI_4$				
5)	$ZrI_4 \stackrel{1800K}{\longrightarrow} Zr(pure) + 2I_2$ This method is known as (a) Liquation (b) van Arkel process (c) Zone refining (d) Mond's process				
	(a) $\Delta SVsT$ (b) ΔG^0VsT (c) $\Delta G^0Vs\frac{1}{T}$ (d) ΔG^0VsT^2				
	6) Which of the following mineral contains calcium as well as magnesium? (a) Zinc bien de (b) Aragonite (c) Dolomite (d) Carnalite 7) The process of heating of copper pyrites to remove sulphur is called				
8)	(a) froth flotation (b) roasting (c) calcination (d) smelling Ignition mixture used in aluminothermite process is				
9)	 (a) Cr + AI₂O₃ (b) Mg + BaO₂ (c) AI + Cr2O₃ (d) Ba+MgO Magnetic separation it is based on the difference in the of the ore and the impurities. (a) magnetic properties (b) chemical properties (c) physical properties (d) melting point 				
10) Na[Ag(CN) ₂] is (a) Sodium (b) Sodium meta (c) (d) Sodium dicyano aurocyanide aluminate Aluminosilicate argentate					
11) An aqueous solution of borax is (a) neutral (b) acidic (c) basic (d) amphoteric					
12) Which among the following is not a borane? (a) B_2H_6 (b) B_3H_6 (c) B_4H_{10} (d) none of these 13) In diborane, the number of electrons that accounts for banana bonds is					
14	(a) six (b) two (c) four (d) three (d) Carbon atoms in fullerene with formula C ₆₀ have				
	(a) sp^3 (b) sp (c) sp^2 (d) partially sp^2 and partially sp^3 hybridised hybridised hybridised				
	5) Oxidation state of carbon in its hydrides (a) +4 (b) -4 (c) +3 (d) +2 (b) The repeating unit in silicone is v				
	(a) SiO_2 (b) $-\frac{1}{Si}$ (c) $R-O-Si-O$ (d) $-\frac{Si}{R}$				
17) The geometry at which carbon atom in diamond are bonded to each other is (a) Tetrahedral (b) graphene (c) Fullerene (d) dry ice					
18	3) Duralumin is an alloy of (a) Cu,Mn (b) Cu,Al,Mg (c) Al,Mn (d) Al,Cu,Mn,Mg				
19) Thermodynamically the most stable form of carbon is (a) Diamond (b) graphite (c) Fullerene (d) none of these					
20) The compound that is used in nuclear reactors as protective shields and control rods is					
	(a) Metal (b) metal (c) Metal carbonates d) metal (d) none of these borides oxides carbide				


```
44) Which of the following halides of group 15 is not hydrolysed?
                                                     (d) Both (a) and (b)
   (a) NF_3
                     (b) PF<sub>3</sub>
                                      (c) NI<sub>3</sub>
45) Which is dibasic?
   (a) Orthophosphoric (b) Pyrophosphoric (c) Orthophosphorus (d) Hypophosphorus
                                                  acid
                                                                           acid
   acid
46) S-S bond is present in
                                                   (c) H_2S_2O_6
                                                                           (d) H_2S_2O_6
   (a) H_2S_2O_7.
                            (b) H_2SO_5
47) Pick the wrong one among the following
   (a) F_2 - Yellow
                          (b) Br_2 - Red
                                               (c) Cl2 - Colourless
                                                                               (d) I<sub>2</sub>- Violet
48) When Copper is heated with cone HNO<sub>3</sub> it produces
   (a) Cu (NO_3)_2 and (b) Cu (NO_3)_2 and (c) Cu (NO_3)_2 and
                                                                        (d) Cu (NO<sub>3</sub>)<sub>2</sub> NO and
   N_20
                          NO_2
                                                 NO
49) Oxalic acid on heating with cone H<sub>2</sub>SO<sub>4</sub> gives
                                          (c) CO_2 + H_2O
   (a) CO only
                      (b) CO<sub>2</sub> only
                                                                  (d) CO + CO_2 + H_2O
50) Which one of the following orders is not in accordance with the property stated
   against it?
                             (b) HI > HBr > HCI > HF (c) F_2 > Cl_2 > Br_2 > (d) F_2 > Cl_2 > Br_2 > (d)
   (a) F_2 > CI_2 > Br_2 >
                            : Acidic property
   I<sub>2</sub>:Bond dissociation
                                                        l<sub>2</sub>: Oxidising power l<sub>2</sub>: Electronegativity
                            in water
   energy
51) Orthophosphorus acid on heating gives_
   (a) Hypophosphorus (b) Orthophosphoric acid (c) Phosphine gas (d) both (b) and (c)
52) The incorrect statement among the following is_
   (a) Reducing character of (b) Basicity of hydrides (c) NCl<sub>5</sub> (d) Phosphorus and
   hydrides of group 15
                                  of group 15 increases does not arsenic can form P\pi-drt
   increases down the group down the group
                                                             exist
                                                                       bond but not nitrogen
53) Strong reducing behaviour of H<sub>3</sub>PO<sub>2</sub> is due to
   (a) High oxidation(b) High electro gain (c) Presence of two-OH (d) Presence of one-OH
   state of
                       enthalpy of
                                               groups and one P-H
                                                                         groups and two P-H
                       phosphorus
                                               bond
                                                                         bonds
   phosphorus
54) Repeated use of which one of the following fertilizers would increase the activity of the
   (a) Ammonium sulphate (b) Superphosphate of lime (c) Urea (d) Potassium nitrate
55) Which reaction is not feasible_
                                                                (c)
                                 (b)
   2H_2O + 2F_2 \longrightarrow 4HF + O_2 \ 2H_2O + 2F_2 \longrightarrow 4HF + O_2 \ 2KBr + Cl_2 \longrightarrow 2KCl + Br_2 \ 2KBr + Cl_2 \longrightarrow 2KCl + Br_2
56) The ionisation energy of Ga is higher than that of Al because of_
   (a) more effective nuclear
                                      (b) smaller atomic size (c) larger size (d) both (a) and
   charge of Ga
                                      of Ga
                                                                 ofGa
                                                                                  (b)
57) Helium is used in balloons in the place of, hydrogen because it is_
                     (b) radioactive and detected
                                                       (c) lighter than
                                                                                 (d) both (a)
   incombustible easily
                                                                                 and(c)
                                                        hydrogen
58) Which of the following compounds is colourless?
   (a) Fe^{3+}
                                                  (c) Co^{2+}
                                                                            (d) Ni<sup>2+</sup>
                           (b) Ti<sup>4+</sup>
59) Which of the following statements is not true?
   (a) on passing H_2S,
                                (b) Na_2Cr_2O_7 is
                                                                           (d) K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solution
                                                      (c) K_2Cr_2O_7
   through acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> preferred over
                                                      solution in acidic becomes yellow on
   solution, a milky colour is K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in
                                                      medium is orange increasing the P<sup>H</sup>
                                volumetric analysis in colour
                                                                           beyond 7
   observed
60) Which of the following lanthanoid ions is diamagnetic?
                                                                          (d) Sm^{2+}
   (a) Eu^{2+}
                           (b) Yb^{2+}
                                                   (c) Ce^{2+}
61) Which of the following oxidation states is most common among the lanthanoids?
                           (b) 2
                                                   (c) 5
62) The actinoid elements which show the highest oxidation state of +7 are
   (a) Np, Pu, Am
                            (b) U, Fm, Th
                                                    (c) U, Th, Md
63) Which of the following is wrong with respect to lanthanide contraction?
   (a) Decrease (b) Increase in tendency (c) Decrease in (d) Resembles second and
   in ionic radii to act as reducing agents basic character third row of d-block elements
64) Identify the paramagnetic species
                                                                           (d) Zn^{2+}
   (a) Cu<sup>+</sup>
                         (b) Cr+
                                              (c) MnO_4
65) The trend in ionisation enthalpy of a transition element is not regular because,
   (a) removal of one electron
                                      (b) due to different
                                                                (c) Poor
```


QB365

https://www.qb365.in/materials/

lower energy and four orbitals with higher energy	lower energy and three orbitals with	and two orbitals v	lower energy and one with orbital with higher		
nigher energy	higher energy	higher energy	energy.		
88) Ligand which is us		()), DD(I)		
(a) NH ₃	• •	` ') EDTA ystal field stabilisation		
energy is	ig complexes the one v	vincii dilowd Zero er	yotar nera otabinoation		
	(b) $[Fe(H_2O)_6]^{3+}$				
90) The hypothetical co	omplex triamminediaq	ua chloridocobalt (I	II)chloride can be		
represented as (a)	(b)	(c)	(d)		
			Cl] $[Co(NH_3)_3(H_2O)_3]Cl_3$		
91) Which among the f					
isomerism?	(L) IMA DOI nt	(.) [5/6/)1.D±	(1) -11 (1) -1		
(a) [Ma ₂ B ₂] ^{n±} 92) Predict the geomet	(b) [MA ₂ BC] ^{n±}	(c) [M(xy)] ^{n±}	(d) all the above		
	(b) Trigonal bipyrar		lanar (d) Octahedral		
${\sf dsp^3}$	$ m dsp^3$	${ m dsp^2}$	d^2sp^3		
93) In $[Fe^{11}(CN)_6]^{4-}$, the		() D 3+	(1) CNT-		
(a) Fe (b 94) For a compound K) Fe^{2+}	(c) Fe ³⁺	(d) CN-		
(a) K^+ (b)		(d) [Fe(CI			
95) Which of the follow	. ,		- TO TO THE RESERVE OF THE RESERVE O		
			(d) [Co (NH ₃) ₄ Cl ₂]Cl ₃		
96) Werner's theory wa					
(a) colour (b) mag 97) The primary and se			(d) neither (a) nor (b)		
(a) 4, 6	(b) 2, 4	(c) 4, 4	(d) 6, 4		
98) According to IUPAC			10		
	o) nitrosyl	(c) nitrato	(d) nitrito		
99) In an octahedral complex is called	omplex, the (n-1) d ord complex		hybridization. The		
		(c) spin paired	(d) all the above		
100) va					
(a) primary	(b) secondary	(c) teriary	(d) None		
			ucture with B ions at the e correct formula of AxBy		
is	and A fon occupying c.	intre of the cube. the	correct formula of Axby		
(a) AB (b) AB ₃ (c) A ₃ B	(d) A_8B_6		
102) Assertion : mono					
Reason: for a mono (a) Both assertion a	clinic system, $a \neq b \neq$		$eta eq 90^{\circ}$ (c) Assertion (d) Both		
• •	reason isare true but				
the correct explana			reason is and reason		
assertion	assertion.		false. are false.		
and F- Ion are (NEE		ructure the coordin	nation number of Ca ²⁺ ion		
(a) 4 and 2	(b) 6 and 6	(c) 8 and 4	(d) 4 and 8		
104) The number of ca	• •	` '	()		
(a) 8	(b) 6	(c) 1	(d) 4		
radius of the anion	will be	re. if the radius of the	he cation is 100pm, the		
(a) $\left(\frac{100}{0.414}\right)$	(b) $\left(\frac{0.732}{100}\right)$	(c) 100X0.414	(d) $\left(\frac{0.414}{100}\right)$		
106) The fraction of total volume occupied by the atoms in a simple cubic is					
(a) $\left(\frac{\pi}{4\sqrt{2}}\right)$	(b) $\left(\frac{\pi}{6}\right)$	(c) $\left(\frac{\pi}{4}\right)$	(d) $\left(\frac{\pi}{3\sqrt{2}}\right)$		
107) The yellow colour (a) excitation of			action of light (d) all of		

126) For the reaction, $2NH_3 \rightarrow N_2 + 3H_2$, if $\frac{-d[NH_3]}{dt} = k_1[NH_3]$, $\frac{d[N_2]}{dt} = k_2[NH_3]$, $\frac{d[H_2]}{dt} = k_3[NH_3]$ then the relation between k_1 , k_2 and k_3 is

 $(\frac{2.5}{2})$ hours hours determined from the given data

(a) $k_1 = k_2 = k_3$

(b) $k_1 = 3k_2 = 2k_3$

(c) $1.5k_1=3k_2=k_3$

(d) $2k_1=k_2=3k_3$

127) The decomposition of phosphine (PH3) on tungsten at low pressure is a first order					
reaction. It is because the (NEET)					
(a) rate is (b) rate is inversely (c) rate is (d) rate of					
proportional to the proportional to the surface independent of the decomposition surface coverage is slow					
surface coverage coverage surface coverage is slow 128) For a reaction Rate = kacetone[]32 then unit of rate constant and rate of reaction					
respectively is					
(a) $(\text{mol } L^{-1} S^{-1})$, (b) $(\text{mol}^{-1/2} L^{1/2} s^{-1})$, (c) $(\text{mol}^{1/2} L^{1/2} s^{-1})$, (d) $(\text{mol} L s^{-1})$,					
(a) $(mol L^{-1} S^{-1})$, (b) $(mol^{-1/2}L^{1/2}s^{-1})$, (c) $(mol^{1/2}L^{1/2}s^{-1})$, (d) $(molLs^{-1})$, $(mol^{1/2}L^{1/2}S^{-1})$, $(mol^{1/2}L^{1/2}s)$					
129) The addition of a catalyst during a chemical reaction alters which of the following					
quantities? (NEET)					
(a) Enthalpy (b) Activation energy (c) Entropy (d) Internal energy					
130) In a reversible reaction, the enthalpy change and the activation energy in the forward direction are respectively -x kJ mol ⁻⁴ and kJ mol ⁻¹ Therefore, the energy of					
activation in the backward direction is					
(a) $(y-x)kJ \text{ mol}^{-1}$ (b) $(x+y)J \text{ mol}^{-1}$ (c) $(x-y)KJ \text{ mol}^{-1}$ (d) $(x+y)X10^3J\text{mol}^{-1}$					
131) For a first order reaction, the rate constant is 6.909 min ⁻¹ .the time taken for 75%					
conversion in minutes is					
(3), (3) , (2) , (3) , (3)					
(a) $\left(\frac{3}{2}\right)log^2$ (b) $\left(\frac{2}{3}\right)log2$ (c) $\left(\frac{3}{2}\right)log\left(\frac{3}{4}\right)$ (d) $\left(\frac{2}{3}\right)log\left(\frac{4}{3}\right)$					
132) In a first order reaction $x \longrightarrow y$ if k is the rate constant and the initial concentration					
of the reactant x is 0.1M, then, the half life is					
(a) $\left(\frac{log2}{k}\right)$ (b) $\left(\frac{0.693}{(0.1)k}\right)$ (c) $\left(\frac{In2}{k}\right)$ (d) none of these					
133) Assertion: rate of reaction doubles when the concentration of the reactant is					
doubles if it is a first order reaction.					
Reason: rate constant also doubles					
(a) Both assertion and (b) Both assertion and reason (c) Assertion (d) Both					
reason are true and reason is are true but reason is not the is true but assertion					
the correct explanation of correct explanation of reason is and reason					
assertion. assertion. false are false. 134) The rate constant of a reaction is 5.8X10 ⁻² . The order of the reaction is					
(a) First order (b) zero order (c) Second order (d) Third order					
105)					
For the reaction $N_2O_5\left(g\right)\longrightarrow 2NO_2\left(g\right)+rac{1}{2}O_2\left(g\right)$ value of rate of disappearance of					
$ m N_2O_5$ is given as $6.5 ext{X}10^{-2}$ mol $ m L^{-1}s^{-1}$ The rate of formation of $ m NO_2$ and $ m O_2$ is					
given respectively as					
(a) $(3.25 \times 10^{-2} \text{ mol L}^{-1} \text{S}^{-1})$ (b) $(1.3 \times 10^{-2} \text{ mol L}^{-1} \text{s}^{-1})$ (c) $(1.3 \times 10^{-1} \text{ mol L}^{-1} \text{s}^{-1})$ (d)					
and $(1.3 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ and } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ and } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ mol L}^{-1}\text{s}^{-1} \text{ mol L}^{-1}\text{s}^{-1} \text{ None of } (3.25 \times 10^{-2} \text{ mol L}^{-1}\text{s}^{-1} \text{ mol L}^{-1}\text{ mol L}^{-1}\text{s}^{-1} \text{ mol L}^{-1}\text{s}^{-1} $					
1) 1) these					
136) During the decomposition of H ₂ O ₂ to give dioxygen, 48 g O ₂ is formed per minute at certain point of time. The rate of formation of water at this point is					
(a) $0.75 \text{ mol min}^{-1}$ (b) 1.5 mol min^{-1} (c) $2.25 \text{ mol min}^{-1}$ (d) 3.0 mol min^{-1}					
137) In a homogeneous reaction $A \longrightarrow B + C + D$ the initial pressure was P_0 and after					
time t it was P. expression for rate constant in terms of P ₀ , P and t will be					
(a) (b) (c) (d)					
$k = \left(rac{2.303}{t} ight)log\left(rac{2P_0}{3P_0-P} ight) \ k = \left(rac{2.303}{t} ight)log\left(rac{2P_0}{P_0-P} ight) \ k = \left(rac{2.303}{t} ight)log\left(rac{3P_0-P}{2P_0} ight) \ k = \left(rac{2.303}{t} ight)log\left(rac{2P_0}{3P_0-2P} ight)$					
$k \equiv \left(\frac{-t}{t} \right) log \left(\frac{1}{3P_0 - P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{2P_0} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{1}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) k \equiv \left(\frac{-t}{t} \right) log \left(\frac{-t}{3P_0 - 2P} \right) log \left(\frac{-t}$					
138) If 75% of a first order reaction was completed in 60 minutes , 50% of the same					
reaction under the same conditions would be completed in					
(a) 20 minutes (b) 30 minutes (c) 35 minutes (d) 75 minutes					
139) The depletion of ozone involves the following steps:					
Step 1: $O_2 + O \stackrel{k_1}{\underset{k_2}{\longleftarrow}} O_3$ (fast)					
1					
Step 2: $O_3 + O \xrightarrow{k} 2O_2$ (slow) The predicted order of the reaction will be					
The predicted order of the reaction will be (a) I (b) II (c) III (d) Zero					
140) The graph between the log K verrus $\frac{1}{T}$ is a straight line. The slope of the line is					
T					

- Ea

141) A reaction having equal activation energies for forward and reverse reactions has (a) $\Delta G = 0$

- (b) $\Delta H = 0$
- (c) $\Delta H = \Delta G = \Delta S = 0$
- (d) $\Delta S = 0$

142)

Which of the above graphs is correct for zero order reactions?

- (a) I, II
- (b) I, III
- (c) I, IV
- (d) II, III

- 143) The term A in Arrhenius equation is called as
 - (a) Probability factor (b) Activation energy (c) Collision factor (d) Frequency factor
- 144) For a reaction: $aA \rightarrow bB$, the rate of reaction is doubled when the concentration of A is increased by four times. The rate of reaction is equal to
 - (a) $k[A]^a$
- (b) $k[A]^{\frac{1}{2}}$
- (c) $k[A]^{\frac{1}{a}}$
- (d) K[A]

145) In any unimolecular reaction

- (a) Only two reacting species is involved in the rate determining step.
- (b) The order and the (c) The molecularity (d) Both molecularity of slowest of the reaction is step are equal to one. one and order is zero.
 - molecularity and order of the reaction are one

146) Rate law cannot be determined from balanced chemical equation if

- (a) Reverse (b) It is an (c) It is a reactions is elementary sequence of not involved reaction elementary reactions
- (d) All of the reactants is in excess. Rate law can be determined from balanced chemical equation if it is an elementary reaction.

147) Activation energy is equal to

- (a) Threshold energy + Energy of colloding molecules
- (c) Threshold energy x (b) ThresholdEnergy of colloiding energy molecules
- (d) Threshold energy -Energy of colloiding molecules

148) For the reaction $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ the rate of the reaction in terms of ammonia

(a) $+\frac{1}{2} \frac{-d[NH_3]}{dt}$

- (b) $-\frac{1}{2} \frac{d[NH_3]}{dt}$
- (c) $\frac{-d[NH_3]}{dt}$

149) The time required for 50% completion of the reaction is known as

- (a) Average life period
- (b) Half-life period
- (c) Rate (d) None of these
- 150) If [A] is the concentration of A at any time t and $[A_0]$ is the concentration at t = 0, then for the first order reaction, the rate equation can be written as

- (a) (b) (c) (d) $k = \frac{2.303}{t} \log \left[\frac{A}{A_0} \right] \qquad k_t = 2.303 \log \left[\frac{A_0}{[A]} \right] \qquad k = 2.303 \log \left[\frac{A_0}{[A_0] [A]} \right] \qquad k = \frac{2.303}{t} \log \left[\frac{A}{A} \right]$

- 1) (c) $MgCO_3
 ightarrow MgO + CO_2$
- 2) (c) Galena
- 3) (c) Displacement with zinc
- 4) (b) van Arkel process
- 5) (b) $\Delta G^0 V s T$
- 6) (c) Dolomite
- 7) (b) roasting
- 8) (b) Mg + BaO₂
- 9) (a) magnetic properties

10)

- (d) Sodium dicyano argentate
- 11)
 - (c) basic
- 12)
- (b) B₃H₆

13)

(c) four

14)

(c) sp² hybridised

15)

(a) +4

16)

17)

(a) Tetrahedral

18)

(d) Al,Cu,Mn,Mg

19)

(b) graphite

20)

(a) Metal borides

21)

(a) Boron nitride

22)

(d) all the above

23)

(d) all the above

24)

(d) electron deficient nature

25)

(b) increases

26)

(b) +1 and +3

27)

(a) due to presence of vacant d-orbitals

28)

(a) resistance to corrosion

29)

(d) ns^2np^2

30)

(d) ability to form $p\pi$ - $p\pi$ bonds with itself

31)

(d)
$$1s^2 2s^2 2p^6 3s^2 3p^3$$

32)

(b) Nitroso ferrous sulphate

33)

(b) 2

34)

(a) 6N

35)

(b) F₂

36)

(b) HF > HCl > HBr > HI

37)

(d) NeF₂

38)

(c) XeO₃

39)

(c) SO₄²⁻

40)

(a) HI

41)

(d)
$$Cl_2 > Br_2 > F_2 > I_2$$

42)

(c) $HClO_3 < HClO_4 < HClO_2 < HClO$


```
(b) P >> N > As > Sb > Bi
44)
    (d) Both (a) and (b)
45)
    (c) Orthophosphorus acid
46)
    (d) H_2S_2O_6
47)
    (c) Cl<sub>2</sub> - Colourless
48)
    (b) Cu (NO<sub>3</sub>)<sub>2</sub> and NO<sub>2</sub>
49)
    (d) CO + CO_2 + H_2O
50)
    (a) F<sub>2</sub>> Cl<sub>2</sub>> Br<sub>2</sub>> l<sub>2</sub>:Bond dissociation energy
51)
    (d) both (b) and (c)
52)
    (d) Phosphorus and arsenic can form P\pi-drt bond but not nitrogen
53)
    (d) Presence of one-OH groups and two P-H bonds
54)
    (a) Ammonium sulphate
55)
    (b) 2H_2O+2F_2\longrightarrow 4HF+O_2
56)
    (d) both (a) and (b)
57)
    (d) both (a) and(c)
58)
    (b) Ti<sup>4+</sup>
59)
    (b) Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> is preferred over K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in volumetric analysis
60)
    (b) Yb<sup>2+</sup>
61)
    (c) 5
62)
    (a) Np, Pu, Am
63)
    (b) Increase in tendency to act as reducing agents
64)
    (b) Cr<sup>+</sup>
65)
    (a) removal of one electron alters the relative energies of 4s and 3d orbitals
66)
    (b) Mn
67)
    (d) All of these
68)
    (a) [Noble gas]n - 1d^{1-10} ns^{1-2}
69)
    (b) Cold dilute alkaline KMnO<sub>4</sub>
70)
    (d) 9
71)
    (b) 0.002
72)
    (c) [M(H_2O)_5Cl]SO_4H_2O
73)
    (d) potassiumtrioxalatoaluminate(III)
```

```
(b) 0
75)
    (a) [Co(CN)_6]^{3-}
76)
    (b) [Co(en)<sub>2</sub>Cl<sub>2</sub>]cl
77)
    (d) Geometrical isomerism
78)
    (c) [Co(NH_3)_4(NCS)_2]ct and [Co(NH_3)_4(SCN)_2]Cl
79)
    (a) geometrical and ionization
80)
    (d) [Fe(en)_3]^{3+}
81)
    (c) [Fe(CO)<sub>5</sub>]
82)
    (d) [Fe(H_2N-CH_2-CH_2-NH_2-NH_2)_3]_3(PO_4)_2
83)
    (c) [Ni(H_2O)_6]^{2+}
84)
    (c) [Co(NH_3)_3(Cl)_3]
85)
    (a) [Cr(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>]Cl<sub>2</sub>
                                                                               QUESTION BANK
86)
    (d) [Co(en)_3]^{3+}
    (c) Three orbitals with lower energy and two orbitals with higher energy
88)
    (d) EDTA
89)
    (b) [Fe(H_2O)_6]^{3+}
90)
    (a) [Co(NH_3)_3(H_2O)_2Cl]Cl_2
91)
    (d) all the above
92)
    (b) Trigonal bipyramidal, dsp<sup>3</sup>
93)
    (b) Fe<sup>2+</sup>
94)
    (d) [Fe(CN)_6]^{4-}
95)
    (b) [Co (NH_3)_3 Cl_3]
96)
    (c) both (a) and (b)
97)
    (a) 4,6
98)
    (b) nitrosyl
99)
    (d) all the above
100)
    (d) None
101)
    (b) AB<sub>3</sub>
102)
    (a) Both assertion and reason are true and reason is the correct explanation of assertion
103)
    (c) 8 and 4
104)
    (a) 8
```

105)

(a)
$$\left(\frac{100}{0.414}\right)$$

106)

(b)
$$\left(\frac{\pi}{6}\right)$$

107)

(a) excitation of electrons in F centers

108)

(c) Frenkel defect

109)

(a) XY₈

110)

(d) FeS

111)

(b) On increasing pressure, the co-ordination number of solid increases.

112

(b) $\,\lambda,$ represents wave length of uv-rays used

113)

(c) Equal number of cation and anion vacancies

114)

(b) Space lattice

115)

(b) Diamond,Ice

116)

(a) 10⁻⁸cm

117)

(c) Frenkel defect

118)

(a) Graphite

119)

(d) both (a) and (b)

120)

(d) Body centred cubic

121)

(d) 1

122)

(b) F centres

123)

(c) both (a) and (b)

124)

(a) fcc> bcc >sc

125)

(d) Without knowing the rate constant, $t_{1/2}$ cannot be determined from the given data

126)

(c) $1.5k_1=3k_2=k_3$

127)

(c) rate is independent of the surface coverage

128)

(b)
$$(\text{mol}^{-1/2}L^{1/2}s^{-1}), (\text{mol }L^{-1}s^{-1})$$

129)

(b) Activation energy

130)

(d) $(x+y)X10^3 \text{Jmol}^{-1}$

131)

(b)
$$\left(\frac{2}{3}\right) log 2$$

132)

(c)
$$\left(\frac{In2}{k}\right)$$

133)

(c) Assertion is true but reason is false

134)

(a) First order

135)

(c) $(1.3 \times 10^{-1} \text{ mol L}^{-1} \text{s}^{-1})$ and $(3.25 \times 10^{-2} \text{ mol L}^{-1} \text{s}^{-1})$

136)

(d) 3.0 mol min^{-1}

137)

(a)
$$k=\left(rac{2.303}{t}
ight)log\left(rac{2P_0}{3P_0-P}
ight)$$

138)

(b) 30 minutes

139)

(a) I

140)

(b)
$$\frac{Ea}{2.303R}$$

141)

(b)
$$\Delta H = 0$$

142)

143)

(d) Frequency factor

144)

(b)
$$k[A]^{rac{1}{2}}$$

145)

(d) Both molecularity and order of the reaction are one.

146)

(c) It is a sequence of elementary reactions

147)

(a) Threshold energy + Energy of colloding molecules

148)

(a)
$$+\frac{1}{2} \frac{-d[NH_3]}{dt}$$

149)

(b) Half-life period

150)

(b)
$$k_t = 2.303 \log \left[rac{A_0}{[A]}
ight]$$

