Theorem 3.1 (The Fundamental Theorem of Algebra)
Every polynomial equation of degree $\boldsymbol{n} \geq \mathbf{1}$ has at least one root in \mathbb{C}.

Theorem 3.2 (Complex Conjugate Root Theorem)

If a complex number z_{0} is a root of a polynomial equation with real coefficients, then its complex conjugate z_{0} is also a root.
Proot
Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{o}=0$ be a polynomial equation with real coefficients. Let z_{0} be a root of this polynomial equation. So, $P\left(z_{0}\right)=0$. Now

$$
\begin{aligned}
P\left(\overline{z_{0}}\right) & =a_{n} \bar{z}_{0}^{n}+a_{n-1} \bar{z}_{0}^{n-1}+\cdots+a_{1} \bar{z}_{0}+a_{0} \\
& =a_{n} \overline{z_{0}^{n}}+a_{n-1} \overline{z_{0}^{n-1}}+\cdots+a_{1} \overline{z_{0}}+a_{0} \\
& =\overline{a_{n} z_{0}^{n}}+\overline{a_{n-1} z_{0}^{n-1}}+\cdots+\overline{a_{1}} \overline{z_{0}}+\overline{a_{0}} \quad\left(a_{r}=\overline{a_{r}} \text { as } a_{r} \text { is real for all } r\right) \\
& =\overline{a_{n} z_{0}^{n}}+\overline{a_{n-1} z_{0}^{n-1}}+\cdots+\overline{a_{1} z_{0}}+\overline{a_{0}} \\
& =\overline{a_{n} z_{0}^{n}+a_{n-1} z_{0}^{n-1}+\cdots+a_{1} z_{0}+a_{0}}=\overline{P\left(z_{0}\right)}=\overline{0}=0
\end{aligned}
$$

That is $P\left(\bar{z}_{0}\right)=0$; this implies that whenever z_{0} is a root (i.e. $P\left(z_{0}\right)=0$), its conjugate \bar{z}_{0} is also a root.

Theorem 3.3
Let p and q be rational numbers such that \sqrt{q} is irrational. If $p+\sqrt{q}$ is a root of a quadratic equation with rational coefficients, then $p-\sqrt{q}$ is also a root of the same equation.

Proof

We prove the theorem by assuming that the quadratic equation is a monic polynomial equation. The result for non-monic polynomial equation can be proved in a similar way.

Let p and q be rational numbers such that \sqrt{q} is irrational. Let $p+\sqrt{q}$ be a root of the equation $x^{2}+b x+c=0$ where b and c are rational numbers.

Let α be the other root. Computing the sum of the roots, we get

$$
\alpha+p+\sqrt{q}=-b
$$

and hence $\alpha+\sqrt{q}=-b-p \in \mathbb{Q}$. Taking $-b-p$ as s, we have $\alpha+\sqrt{q}=s$.
This implies that

$$
\alpha=s-\sqrt{q} .
$$

Computing the product of the roots, gives

$$
(s-\sqrt{q})(p+\sqrt{q})=c
$$

and hence $(s p-q)+(s-p) \sqrt{q}=c \in \mathbb{Q}$. Thus $s-p=0$. This implies that $s=p$ and hence we get $\alpha=p-\sqrt{q}$. So, the other root is $p-\sqrt{q}$.

Theorem 3.4

Let p and q be rational numbers so that \sqrt{p} and \sqrt{q} are irrational numbers; further let one of \sqrt{p} and \sqrt{q} be not a rational multiple of the other. If $\sqrt{\boldsymbol{p}}+\sqrt{q}$ is a root of a polynomial equation with rational coefficients, then $\sqrt{p}-\sqrt{q},-\sqrt{p}+\sqrt{q}$, and $-\sqrt{p}-\sqrt{q}$ are also roots of the same polynomial equation.

Theorem 3.5 (Rational Root Theorem)

Let $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0$ and $a_{0} \neq 0$, be a polynomial with integer coefficients. If $\frac{p}{q}$, with $(p, q)=1$, is a root of the polynomial, then p is a factor of a_{0} and q is a factor of a_{n}.

Theorem 3.6
A polynomial equation $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}=0, \quad\left(a_{n} \neq 0\right)$ is a reciprocal equation if, and only if, one of the following two statements is true:
(i) $a_{n}=a_{0}, \quad a_{n-1}=a_{1}, \quad a_{n-2}=a_{2} \cdots$
(ii) $a_{n}=-a_{0}, a_{n-1}=-a_{1}, a_{n-2}=-a_{2}, \cdots$

Proof
Consider the polynomial equation

$$
\begin{equation*}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}=0 \tag{1}
\end{equation*}
$$

Replacing x by $\frac{1}{x}$ in (1), we get

$$
\begin{equation*}
P\left(\frac{1}{x}\right)=\frac{a_{n}}{x^{n}}+\frac{a_{n-1}}{x^{n-1}}+\frac{a_{n-2}}{x^{n-2}}+\cdots+\frac{a_{2}}{x^{2}}+\frac{a_{1}}{x}+a_{0}=0 . \tag{2}
\end{equation*}
$$

Multiplying both sides of (2) by x^{n}, we get

$$
\begin{equation*}
x^{n} P\left(\frac{1}{x}\right)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-2} x^{2}+a_{n-1} x+a_{n}=0 \tag{3}
\end{equation*}
$$

Now, (1) is a reciprocal equation $\Leftrightarrow P(x)= \pm x^{n} P\left(\frac{1}{x}\right) \Leftrightarrow(1)$ and (3) are same .
This is possible $\Leftrightarrow \frac{a_{n}}{a_{0}}=\frac{a_{n-1}}{a_{1}}=\frac{a_{n-2}}{a_{2}}=\cdots=\frac{a_{2}}{a_{n-2}}=\frac{a_{1}}{a_{n-1}}=\frac{a_{0}}{a_{n}}$.
Let the proportion be equal to λ. Then, we get $\frac{a_{n}}{a_{0}}=\lambda$ and $\frac{a_{0}}{a_{n}}=\lambda$. Multiplying these equations, we get $\lambda^{2}=1$. So, we get two cases $\lambda=1$ and $\lambda=-1$.

Case (i) :

$\lambda=1$ In this case, we have $a_{n}=a_{0}, a_{n-1}=a_{1}, a_{n-2}=a_{2}, \cdots$.
That is, the coefficients of (1) from the beginning are equal to the coefficients from the end.
Case (ii) :
$\lambda=-1$ In this case, we have $a_{n}=-a_{0}, a_{n-1}=-a_{1}, a_{n-2}=-a_{2}, \cdots$.
That is, the coefficients of (1) from the beginning are equal in magnitude to the coefficients from the end, but opposite in sign.

Theorem 3.7 (Descartes Rule)
If p is the number of positive zeros of a polynomial $P(x)$ with real coefficients and s is the number of sign changes in coefficients of $P(x)$, then $s-p$ is a nonnegative even integer.

