CHAPTER 3 – Theory of Equation- Theorem

Theorem 3.1 (The Fundamental Theorem of Algebra) Every polynomial equation of degree $n \ge 1$ has at least one root in \mathbb{C} .

Theorem 3.2 (Complex Conjugate Root Theorem)

If a complex number z_0 is a root of a polynomial equation with real coefficients, then its complex conjugate $\overline{z_0}$ is also a root.

Proof

Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_o = 0$ be a polynomial equation with real coefficients. Let z_0 be a root of this polynomial equation. So, $P(z_0)=0$. Now

$$P(\overline{z_0}) = a_n \overline{z_0}^n + a_{n-1} \overline{z_0}^{n-1} + \dots + a_1 \overline{z_0} + a_0$$

= $a_n \overline{z_0}^n + a_{n-1} \overline{z_0}^{n-1} + \dots + a_1 \overline{z_0} + a_0$
= $\overline{a_n} \overline{z_0}^n + \overline{a_{n-1}} \overline{z_0}^{n-1} + \dots + \overline{a_1} \overline{z_0} + \overline{a_0}$ $(a_r = \overline{a_r} \text{ as } a_r \text{ is real for all } r)$
= $\overline{a_n \overline{z_0}^n} + \overline{a_{n-1} \overline{z_0}^{n-1}} + \dots + \overline{a_1 \overline{z_0}} + \overline{a_0}$
= $\overline{a_n \overline{z_0}^n} + \overline{a_{n-1} \overline{z_0}^{n-1}} + \dots + \overline{a_1 \overline{z_0}} + \overline{a_0}$
= $\overline{a_n \overline{z_0}^n} + \overline{a_{n-1} \overline{z_0}^{n-1}} + \dots + \overline{a_1 \overline{z_0}} + \overline{a_0}$

That is $P(\overline{z}_0) = 0$; this implies that whenever z_0 is a root (i.e. $P(z_0)=0$), its conjugate \overline{z}_0 is also a root.

Theorem 3.3

Let p and q be rational numbers such that \sqrt{q} is irrational. If $p + \sqrt{q}$ is a root of a quadratic equation with rational coefficients, then $p - \sqrt{q}$ is also a root of the same equation.

Proof

We prove the theorem by assuming that the quadratic equation is a monic polynomial equation. The result for non-monic polynomial equation can be proved in a similar way.

Let p and q be rational numbers such that \sqrt{q} is irrational. Let $p + \sqrt{q}$ be a root of the equation $x^2 + bx + c = 0$ where b and c are rational numbers.

Let α be the other root. Computing the sum of the roots, we get

$$\alpha + p + \sqrt{q} = -b$$

and hence $\alpha + \sqrt{q} = -b - p \in \mathbb{Q}$. Taking -b - p as s, we have $\alpha + \sqrt{q} = s$.

This implies that

$$\alpha = s - \sqrt{q} \; .$$

Computing the product of the roots, gives

$$(s - \sqrt{q})(p + \sqrt{q}) = c$$

and hence $(sp-q) + (s-p)\sqrt{q} = c \in \mathbb{Q}$. Thus s - p = 0. This implies that s = p and hence we get $\alpha = p - \sqrt{q}$. So, the other root is $p - \sqrt{q}$.

Theorem 3.4

Let p and q be rational numbers so that \sqrt{p} and \sqrt{q} are irrational numbers; further let one of \sqrt{p} and \sqrt{q} be not a rational multiple of the other. If $\sqrt{p} + \sqrt{q}$ is a root of a polynomial equation with rational coefficients, then $\sqrt{p} - \sqrt{q}, -\sqrt{p} + \sqrt{q}$, and $-\sqrt{p} - \sqrt{q}$ are also roots of the same polynomial equation.

Theorem 3.5 (Rational Root Theorem)

Let $a_n x^n + \dots + a_1 x + a_0$ with $a_n \neq 0$ and $a_0 \neq 0$, be a polynomial with integer coefficients. If $\frac{p}{q}$ with (p,q) = 1, is a root of the polynomial, then p is a factor of a_0 and q is a factor of a_n .

Theorem 3.6

A polynomial equation $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0 = 0$, $(a_n \neq 0)$ is a reciprocal equation if, and only if, one of the following two statements is true:

(i) $a_n = a_0$, $a_{n-1} = a_1$, $a_{n-2} = a_2$...

(ii) $a_n = -a_0, a_{n-1} = -a_1, a_{n-2} = -a_2, \cdots$

Proof

Consider the polynomial equation

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0 = 0. \quad \dots (1)$$

Replacing x by $\frac{1}{x}$ in (1), we get

$$P\left(\frac{1}{x}\right) = \frac{a_n}{x^n} + \frac{a_{n-1}}{x^{n-1}} + \frac{a_{n-2}}{x^{n-2}} + \dots + \frac{a_2}{x^2} + \frac{a_1}{x} + a_0 = 0.$$
 (2)

Multiplying both sides of (2) by x^n , we get

$$x^{n}P\left(\frac{1}{x}\right) = a_{0}x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{n-2}x^{2} + a_{n-1}x + a_{n} = 0. \quad \dots (3)$$

Now, (1) is a reciprocal equation $\Leftrightarrow P(x) = \pm x^n P\left(\frac{1}{x}\right) \Leftrightarrow (1)$ and (3) are same.

This is possible $\iff \frac{a_n}{a_0} = \frac{a_{n-1}}{a_1} = \frac{a_{n-2}}{a_2} = \dots = \frac{a_2}{a_{n-2}} = \frac{a_1}{a_{n-1}} = \frac{a_0}{a_n}.$

Let the proportion be equal to λ . Then, we get $\frac{a_n}{a_0} = \lambda$ and $\frac{a_0}{a_n} = \lambda$. Multiplying these equations, we get $\lambda^2 = 1$. So, we get two cases $\lambda = 1$ and $\lambda = -1$.

Case (i) :

 $\lambda = 1$ In this case, we have $a_n = a_0, a_{n-1} = a_1, a_{n-2} = a_2, \cdots$.

That is, the coefficients of (1) from the beginning are equal to the coefficients from the end. **Case (ii) :**

 $\lambda = -1$ In this case, we have $a_n = -a_0$, $a_{n-1} = -a_1$, $a_{n-2} = -a_2$, \cdots .

That is, the coefficients of (1) from the beginning are equal in magnitude to the coefficients from the end, but opposite in sign.

Theorem 3.7 (Descartes Rule)

If p is the number of positive zeros of a polynomial P(x) with real coefficients and s is the number of sign changes in coefficients of P(x), then s - p is a nonnegative even integer.