CHAPTER 1 - Application of Matrices and Determinants - Theorem

Theorem 1.1
For every square matrix A of order $n, A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{n}$.

Proof

For simplicity, we prove the theorem for $n=3$ only.
Consider $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Then, we get

$$
\begin{aligned}
& a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=|A|, \quad a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=0, \quad a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}=0 ; \\
& a_{21} A_{11}+a_{22} A_{12}+a_{23} A_{13}=0, \quad a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}=|A|, \quad a_{21} A_{31}+a_{22} A_{32}+a_{23} A_{33}=0 ; \\
& a_{31} A_{11}+a_{32} A_{12}+a_{33} A_{13}=0, \quad a_{31} A_{21}+a_{32} A_{22}+a_{33} A_{23}=0, \quad a_{31} A_{31}+a_{32} A_{32}+a_{33} A_{33}=|A| .
\end{aligned}
$$

By using the above equations, we get

$$
\begin{align*}
& A(\operatorname{adj} A)=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right]=|A|\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=|A| I_{3} \tag{1}\\
& (\operatorname{adj} A) A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right]=|A|\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=|A| I_{3}, \tag{2}
\end{align*}
$$

where I_{3} is the identity matrix of order 3 .
So, by equations (1) and (2), we get $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{3}$.

Note

If A is a singular matrix of order n, then $|A|=0$ and so $A(\operatorname{adj} A)=(\operatorname{adj} A) A=O_{n}$, where O_{n} denotes zero matrix of order n.

Theorem 1.2

If a square matrix has an inverse, then it is unique.

Proof

Let A be a square matrix order n such that an inverse of A exists. If possible, let there be two inverses B and C of A. Then, by definition, we have $A B=B A=I_{n}$ and $A C=C A=I_{n}$.

Using these equations, we get

$$
C=C I_{n}=C(A B)=(C A) B=I_{n} B=B .
$$

Hence the uniqueness follows.
Notation The inverse of an A is denoted by A^{-1}.

Note

$A A^{-1}=A^{-1} A=I_{n}$.

Theorem 1.3

Let A be square matrix of order n. Then, A^{-1} exists if and only if A is non-singular.

Proof

Suppose that A^{-1} exists. Then $A A^{-1}=A^{-1} A=I_{n}$.
By the product rule for determinants, we get
$\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=\operatorname{det}\left(I_{n}\right)=1$. So, $|A|=\operatorname{det}(A) \neq 0$.
Hence A is non-singular.
Conversely, suppose that A is non-singular.
Then $|A| \neq 0$. By Theorem 1.1, we get

$$
A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{n} .
$$

So, dividing by $|A|$, we get $A\left(\frac{1}{|A|} \operatorname{adj} A\right)=\left(\frac{1}{|A|} \operatorname{adj} A\right) A=I_{n}$.
Thus, we are able to find a matrix $B=\frac{1}{|A|}$ adj A such that $A B=B A=I_{n}$.
Hence, the inverse of A exists and it is given by $A^{-1}=\frac{\mathbf{1}}{|\boldsymbol{A}|}$ adj A.

Theorem 1.4

If A is non-singular, then
(i) $\left|A^{-1}\right|=\frac{1}{|A|}$
(ii) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(iii) $(\lambda A)^{-1}=\frac{1}{\lambda} A^{-1}$, where λ is a non-zero scalar.

Proof

Let A be non-singular. Then $|A| \neq 0$ and A^{-1} exists. By definition,

$$
\begin{equation*}
A A^{-1}=A^{-1} A=I_{n} . \tag{1}
\end{equation*}
$$

(i) By (1), we get $\left|A A^{-1}\right|=\left|A^{-1} A\right|=\left|I_{n}\right|$.

Using the product rule for determinants, we get $|A|\left|A^{-1}\right|=\left|I_{n}\right|=1$.
Hence, $\left|A^{-1}\right|=\frac{1}{|A|}$.
(ii) From (1), we get $\left(A A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=\left(I_{n}\right)^{T}$.

Using the reversal law of transpose, we get $\left(A^{-1}\right)^{T} A^{T}=A^{T}\left(A^{-1}\right)^{T}=I_{n}$. Hence $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(iii) Since λ is a non-zero number, from (1), we get $(\lambda A)\left(\frac{1}{\lambda} A^{-1}\right)=\left(\frac{1}{\lambda} A^{-1}\right)(\lambda A)=I_{n}$. So, $(\lambda A)^{-1}=\frac{1}{\lambda} A^{-1}$.

Theorem 1.5 (Left Cancellation LaW)
Let A, B, and C be square matrices of order n. If A is non-singular and $A B=A C$, then $B=C$.

Proof

Since A is non-singular, A^{-1} exists and $A A^{-1}=A^{-1} A=I_{n}$. Taking $A B=A C$ and pre-multiplying both sides by A^{-1}, we get $A^{-1}(A B)=A^{-1}(A C)$. By using the associative property of matrix multiplication and property of inverse matrix, we get $B=C$.

Theorem1.6 (Right Cancellation Law)

Let A, B, and C be square matrices of order n. If A is non-singular and $B A=C A$, then $B=C$.

Proof

Since A is non-singular, A^{-1} exists and $A A^{-1}=A^{-1} A=I_{n}$. Taking $B A=C A$ and post-multiplying both sides by A^{-1}, we get $(B A) A^{-1}=(C A) A^{-1}$. By using the associative property of matrix multiplication and property of inverse matrix, we get $B=C$.

Note

If A is singular and $A B=A C$ or $B A=C A$, then B and C need not be equal. For instance, consider the following matrices:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right], B=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right] .
$$

We note that $|A|=0$ and $A B=A C$; but $B \neq C$.

Theorem 1.7 (Reversal Law for Inverses)

If A and B are non-singular matrices of the same order, then the product $A B$ is also non-singular and $(A B)^{-1}=B^{-1} A^{-1}$.

Proof

Assume that A and B are non-singular matrices of same order n. Then, $|A| \neq 0,|B| \neq 0$, both A^{-1} and B^{-1} exist and they are of order n. The products $A B$ and $B^{-1} A^{-1}$ can be found and they are also of order n. Using the product rule for determinants, we get $|A B|=|A \| B| \neq 0$. So, $A B$ is non-singular and

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=\left(A\left(B B^{-1}\right)\right) A^{-1}=\left(A I_{n}\right) A^{-1}=A A^{-1}=I_{n} ; \\
& \left(B^{-1} A^{-1}\right)(A B)=\left(B^{-1}\left(A^{-1} A\right)\right) B=\left(B^{-1} I_{n}\right) B=B^{-1} B=I_{n} .
\end{aligned}
$$

Hence $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem 1.8 (Law of Double Inverse)

If A is non-singular, then 4^{-1} is also non-singular and $\left(A^{-1}\right)^{-1}=A$

Proof

Assume that A is non-singular. Then $|A| \neq 0$, and A^{-1} exists.
Now $\left|A^{-1}\right|=\frac{1}{|A|} \neq 0 \Rightarrow A^{-1}$ is also non-singular, and $A A^{-1}=A^{-1} A=I$.
Now, $A A^{-1}=I \Rightarrow\left(A A^{-1}\right)^{-1}=I \Rightarrow\left(A^{-1}\right)^{-1} A^{-1}=I$.
Post-multiplying by A on both sides of equation (1), we get $\left(A^{-1}\right)^{-1}=A$.

Theorem 1.9

If A is a non-singular square matrix of order n, then
(i) $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)=\frac{1}{|A|} A$
(ii) $|\operatorname{adj} A|=|A|^{n-1}$
(iii) $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
(iv) $\operatorname{adj}(\lambda A)=\lambda^{n-1} \operatorname{adj}(A), \lambda$ is a nonzero scalar
(v) $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$
(vi) $(\operatorname{adj} A)^{T}=\operatorname{adj}\left(A^{T}\right)$

Proof
Since A is a non-singular square matrix, we have $|A| \neq 0$ and so, we get
(i) $\left.A^{-1}=\frac{1}{|A|}(\operatorname{adj} A) \Rightarrow \operatorname{adj} A=|A| A^{-1} \Rightarrow(\operatorname{adj} A)^{-}=|A| A \quad \overline{|A|} \quad\right)^{-1}=\frac{1}{|A|} A$.

Replacing A by A^{-1} in adj $A=|A| A^{-1}$, we get adj $\left(A^{-1}\right)=\left|A^{-1}\right|\left(A^{-1}\right)^{-1}=\frac{1}{|A|} A$.
Hence, we get $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)=\frac{1}{|A|} A$.
(ii) $\left.\quad A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{n} \Rightarrow \operatorname{det}(A(\operatorname{adj} A))^{1}=\operatorname{det}\left((\operatorname{adj})^{-1} A\right)^{\prime} A\right)={ }^{1}=\left(A^{-1}\left(|A| I_{n}\right)\right.$

$$
\Rightarrow|A||\operatorname{adj} A|=|A|^{n} \Rightarrow|\operatorname{adj} A|=|A|^{n-1}
$$

(iii) For any non-singular matrix B of order n, we have $B(\operatorname{adj} B)=(\operatorname{adj} B) B=|B| I_{n}$.

Put $B=\operatorname{adj} A$. Then, we get $(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|\operatorname{adj} A| I_{n}$.
So, since $|\operatorname{adj} A|=|A|^{n-1}$, we get $(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} I_{n}$.
Pre-multiplying both sides by A, we get $A((\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A)))=A\left(|A|^{n-1} I_{n}\right)$.
Using the associative property of matrix multiplication, we get
$(A(\operatorname{adj} A)) \operatorname{adj}(\operatorname{adj} A)=A\left(|A|^{n-1} I_{n}\right)$.
Hence, we get $\left(|A| I_{n}\right)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} A$. That is, $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$.
(iv) Replacing A by λA in $\operatorname{adj}(A)=|A| A^{-1}$, we get
$\operatorname{adj}(\lambda A)=|\lambda A|(\lambda A)^{-1}=\lambda^{n}|A|-\frac{1}{-}$
(v) By (iii), we have $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$. So, by taking determinant on both sides, we get

$$
|\operatorname{adj}(\operatorname{adj} A)|=\left||A|^{n-2} A\right|=\left(|A|^{(n-2)}\right)^{n}|A|=|A|^{n^{2}-2 n+1}=|A|^{(n-1)^{2}}
$$

 get $\operatorname{adj}\left(A^{T}\right)=\left|A^{T}\right|\left(A^{T}\right)^{-1}=|A|\left(A^{-1}\right)^{T}=\left(|A| A^{-1}\right)^{T}=\left(|A| \frac{1}{|A|} \operatorname{adj} A\right)^{T}=(\operatorname{adj} A)^{T}$.

Note

If A is a non-singular matrix of order 3, then, $|A| \neq 0$. By property (ii), we get $|\operatorname{adj} A|=|A|^{2}$ and so, $|\operatorname{adj} A|$ is positive. Then, we get $|A|= \pm \sqrt{|\operatorname{adj} A|}$.

So, we get $A^{-1}= \pm \frac{1}{\sqrt{|\operatorname{adj} A|}} \operatorname{adj} A$.
Further, by the property (iii), we get $A=\frac{1}{|A|} \operatorname{adj}(\operatorname{adj} A)$.
Hence, if A is a non-singular matrix of order 3 , then, we get $A= \pm \frac{1}{\sqrt{|\operatorname{adj} A|}} \operatorname{adj}(\operatorname{adj} A)$.

Theorem 1.10
If A and B are any two non-singular square matrices of order n, then

$$
\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)
$$

Proof

Replacing A by $A B$ in $\operatorname{adj}(A)=|A| A^{-1}$, we get

$$
\operatorname{adj}(A B)=|A B|(A B)^{-1}=\left(|B| B^{-1}\right)\left(|A| A^{-1}\right)=\operatorname{adj}(B) \operatorname{adj}(A)
$$

Theorem 1.11
The rank of a matrix in row echelon form is the number of non-zero rows in it.
The rank of a matrix which is not in a row-echelon form, can be found by applying the following result which is stated without proof.

Theorem 1.12

The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form of the matrix.

Theorem 1.13

Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary row operations.

Theorem 1.14 (Rouche'-Capelli Theorem)

A system of linear equations, written in the matrix form as $A X=B$, is consistent if and only if the rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, $\rho(A)=\rho([A \mid B])$.

