CHAPTER 1 – Application of Matrices and Determinants - Theorem

Theorem 1.1 For every square matrix A of order n, $A(adj A) = (adj A)A = |A|I_n$.

Proof

For simplicity, we prove the theorem for n = 3 only. Consider $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Then, we get $a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = |A|, a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0, a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0;$ $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13} = 0, a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = |A|, a_{21}A_{31} + a_{22}A_{32} + a_{23}A_{33} = 0;$ $a_{31}A_{11} + a_{32}A_{12} + a_{33}A_{13} = 0, a_{31}A_{21} + a_{32}A_{22} + a_{33}A_{23} = 0, a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33} = |A|.$

By using the above equations, we get

$$A(\operatorname{adj} A) = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|I_3 \qquad \dots (1)$$
$$(\operatorname{adj} A) A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|I_3, \qquad \dots (2)$$

where I_3 is the identity matrix of order 3.

So, by equations (1) and (2), we get $A(\operatorname{adj} A) = (\operatorname{adj} A)A = |A|I_3$.

Note

If A is a singular matrix of order n, then |A| = 0 and so $A(\operatorname{adj} A) = (\operatorname{adj} A)A = O_n$, where O_n denotes zero matrix of order n.

Theorem 1.2

If a square matrix has an inverse, then it is unique.

Proof

Let A be a square matrix order n such that an inverse of A exists. If possible, let there be two inverses B and C of A. Then, by definition, we have $AB = BA = I_n$ and $AC = CA = I_n$.

Using these equations, we get

$$C = CI_n = C(AB) = (CA)B = I_nB = B$$

Hence the uniqueness follows.

Notation The inverse of an A is denoted by A^{-1} .

Note

 $AA^{-1} = A^{-1}A = I_n.$

QB365

https://www.qb365.in/materials/

Theorem 1.3

Let A be square matrix of order n. Then, A^{-1} exists if and only if A is non-singular.

Proof

Suppose that A^{-1} exists. Then $AA^{-1} = A^{-1}A = I_n$.

By the product rule for determinants, we get

 $\det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(A^{-1})\det(A) = \det(I_n) = 1.$ So, $|A| = \det(A) \neq 0.$

Hence A is non-singular.

Conversely, suppose that A is non-singular.

Then $|A| \neq 0$. By Theorem 1.1, we get

 $A(\operatorname{adj} A) = (\operatorname{adj} A)A = |A|I_n.$

So, dividing by |A|, we get $A\left(\frac{1}{|A|} \operatorname{adj} A\right) = \left(\frac{1}{|A|} \operatorname{adj} A\right) A = I_n$.

Thus, we are able to find a matrix $B = \frac{1}{|A|} \operatorname{adj} A$ such that $AB = BA = I_n$.

Hence, the inverse of A exists and it is given by $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$.

Theorem 1.4 If A is non-singular, then (i) $|A^{-1}| = \frac{1}{|A|}$ (ii) $(A^T)^{-1} = (A^{-1})^T$ (iii) $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$, where λ is a non-zero scalar.

Proof

Let A be non-singular. Then $|A| \neq 0$ and A^{-1} exists. By definition,

$$AA^{-1} = A^{-1}A = I_n.$$
 ...(1)

(i) By (1), we get $|AA^{-1}| = |A^{-1}A| = |I_n|$. Using the product rule for determinants, we get $|A||A^{-1}| = |I_n| = 1$. Hence, $|A^{-1}| = \frac{1}{|A|}$. (ii) From (1), we get $(AA^{-1})^T = (A^{-1}A)^T = (I_n)^T$. Using the reversal law of transpose, we get $(A^{-1})^T A^T = A^T (A^{-1})^T = I_n$. Hence $(A^T)^{-1} = (A^{-1})^T$.

(iii) Since λ is a non-zero number, from (1), we get $(\lambda A) \left(\frac{1}{\lambda} A^{-1}\right) = \left(\frac{1}{\lambda} A^{-1}\right) (\lambda A) = I_n$.

So,
$$(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$$
.

https://www.qb365.in/materials/

Theorem 1.5 (Left Cancellation LaW)

Let A, B, and C be square matrices of order n. If A is non-singular and AB = AC, then B = C.

Proof

Since *A* is non-singular, A^{-1} exists and $AA^{-1} = A^{-1}A = I_n$. Taking AB = AC and pre-multiplying both sides by A^{-1} , we get $A^{-1}(AB) = A^{-1}(AC)$. By using the associative property of matrix multiplication and property of inverse matrix, we get B = C.

Theorem1.6 (Right Cancellation Law)

Let A, B, and C be square matrices of order n. If A is non-singular and BA = CA, then B = C.

Proof

Since *A* is non-singular, A^{-1} exists and $AA^{-1} = A^{-1}A = I_n$. Taking BA = CA and post-multiplying both sides by A^{-1} , we get $(BA)A^{-1} = (CA)A^{-1}$. By using the associative property of matrix multiplication and property of inverse matrix, we get B = C.

Note

If A is singular and AB = AC or BA = CA, then B and C need not be equal. For instance, consider the following matrices:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

We note that |A| = 0 and AB = AC; but $B \neq C$.

Theorem 1.7 (Reversal Law for Inverses)

If A and B are non-singular matrices of the same order, then the product AB is also non-singular and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof

Assume that A and B are non-singular matrices of same order n. Then, $|A| \neq 0$, $|B| \neq 0$, both A^{-1} and B^{-1} exist and they are of order n. The products AB and $B^{-1}A^{-1}$ can be found and they are also of order n. Using the product rule for determinants, we get $|AB| = |A||B| \neq 0$. So, AB is non-singular and

$$(AB)(B^{-1}A^{-1}) = (A(BB^{-1}))A^{-1} = (AI_n)A^{-1} = AA^{-1} = I_n;$$

$$(B^{-1}A^{-1})(AB) = (B^{-1}(A^{-1}A))B = (B^{-1}I_n)B = B^{-1}B = I_n.$$

Hence $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 1.8 (Law of Double Inverse)

If A is non-singular, then A^{-1} is also non-singular and $(A^{-1})^{-1} = A$

Proof

Assume that A is non-singular. Then $|A| \neq 0$, and A^{-1} exists.

Now
$$|A^{-1}| = \frac{1}{|A|} \neq 0 \Rightarrow A^{-1}$$
 is also non-singular, and $AA^{-1} = A^{-1}A = I$.
Now, $AA^{-1} = I \Rightarrow (AA^{-1})^{-1} = I \Rightarrow (A^{-1})^{-1}A^{-1} = I$ (1)
Post-multiplying by A on both sides of equation (1), we get $(A^{-1})^{-1} = A$.

Theorem 1.9	
If A is a non-singular square matrix of order n , then	
(i) $(adj A)^{-1} = adj(A^{-1}) = \frac{1}{ A }A$	(ii) $ adj A = A ^{n-1}$
(iii) $\operatorname{adj}(\operatorname{adj} A) = A ^{n-2} A$	(iv) $adj(\lambda A) = \lambda^{n-1}adj(A), \lambda$ is a nonzero scalar
(v) $ adj(adjA) = A ^{(n-1)^2}$	(vi) $(\operatorname{adj} A)^T = \operatorname{adj}(A^T)$

Proof

Since A is a non-singular square matrix, we have $|A| \neq 0$ and so, we get

- (i) $A^{-1} = \frac{1}{|A|} (\operatorname{adj} A) \Rightarrow \operatorname{adj} A = |A| A^{-1} \Rightarrow (\operatorname{adj} A)^{-} = |A| A \frac{|A|}{|A|} \int^{-1} = \frac{1}{|A|} A.$ Replacing A by A^{-1} in $\operatorname{adj} A = |A| A^{-1}$, we get $\operatorname{adj} (A^{-1}) = |A^{-1}| (A^{-1})^{-1} = \frac{1}{|A|} A.$ Hence, we get $(\operatorname{adj} A)^{-1} = \operatorname{adj} (A^{-1}) = \frac{1}{|A|} A.$ (ii) $A(\operatorname{adj} A) = (\operatorname{adj} A)A = |A| I_n \Rightarrow \det (A(\operatorname{adj} A))^{1} = \det (\operatorname{adj}^{-1} A)^{-1} = \int_{-1}^{1} \det (|A| I_n)$ $\Rightarrow |A| |\operatorname{adj} A| = |A|^n \Rightarrow |\operatorname{adj} A| = |A|^{n-1}.$
- (iii) For any non-singular matrix B of order n, we have $B(adj B) = (adj B)B = |B|I_n$.

Put
$$B = \operatorname{adj} A$$
. Then, we get $(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A)) = |\operatorname{adj} A| I_n$.

So, since $|\operatorname{adj} A| = |A|^{n-1}$, we get $(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A)) = |A|^{n-1} I_n$.

Pre-multiplying both sides by A, we get $A((\operatorname{adj} A)(\operatorname{adj} (\operatorname{adj} A))) = A(|A|^{n-1} I_n)$.

Using the associative property of matrix multiplication, we get $(A(\text{adj } A)) \text{adj}(\text{adj } A) = A(|A|^{n-1} I_n).$

Hence, we get $(|A|I_n)(adj(adj A)) = |A|^{n-1} A$. That is, $adj(adj A) = |A|^{n-2} A$.

- (iv) Replacing A by λA in $\operatorname{adj}(A) = |A| A^{-1}$, we get $\operatorname{adj}(\lambda A) = |\lambda A| (\lambda A)^{-1} = \lambda^n |A|^{\frac{1}{-1}} | |$
- (v) By (iii), we have $\operatorname{adj}(\operatorname{adj} A) = |A|^{n-2} A$. So, by taking determinant on both sides, we get $|\operatorname{adj}(\operatorname{adj} A)| = ||A|^{n-2} A| = (|A|^{(n-2)})^n |A| = |A|^{n^2 - 2n+1} = |A|^{(n-1)^2}$.

(vi) Replacing
$$A$$
 by A^{T} in $A^{-1} = \frac{1}{|A|\lambda} \operatorname{adj} A = \operatorname{We}^{1} \operatorname{get} \left(A^{T} \right)^{-1} \operatorname{adj} \operatorname{adj} A \operatorname{adj} \left(A^{T} \right)$ and hence, we
get $\operatorname{adj} \left(A^{T} \right) = |A^{T}| \left(A^{T} \right)^{-1} = |A| \left(A^{-1} \right)^{T} = \left(|A| A^{-1} \right)^{T} = \left(|A| \frac{1}{|A|} \operatorname{adj} A \right)^{T} = \left(\operatorname{adj} A \right)^{T}$.

QB365

https://www.qb365.in/materials/

Note

If A is a non-singular matrix of order 3, then, $|A| \neq 0$. By property (*ii*), we get $|\operatorname{adj} A| = |A|^2$ and so, $|\operatorname{adj} A|$ is positive. Then, we get $|A| = \pm \sqrt{|\operatorname{adj} A|}$.

So, we get $A^{-1} = \pm \frac{1}{\sqrt{|\operatorname{adj} A|}} \operatorname{adj} A$.

Further, by the property (*iii*), we get $A = \frac{1}{|A|} \operatorname{adj}(\operatorname{adj} A)$.

Hence, if A is a non-singular matrix of order 3, then, we get $A = \pm \frac{1}{\sqrt{|\operatorname{adj} A|}} \operatorname{adj}(\operatorname{adj} A)$.

Theorem 1.10

If A and B are any two non-singular square matrices of order n, then

 $\operatorname{adj}(AB) = (\operatorname{adj} B)(\operatorname{adj} A).$

Proof

Replacing A by AB in $adj(A) = |A|A^{-1}$, we get

$$adj(AB) = |AB|(AB)^{-1} = (|B|B^{-1})(|A|A^{-1}) = adj(B)adj(A)$$

Theorem 1.11

The rank of a matrix in row echelon form is the number of non-zero rows in it.

The rank of a matrix which is not in a row-echelon form, can be found by applying the following result which is stated without proof.

Theorem 1.12

The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form of the matrix.

Theorem 1.13

Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary row operations.

Theorem 1.14 (Rouche'-Capelli Theorem)

A system of linear equations, written in the matrix form as AX = B, is consistent if and only if the rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, $\rho(A) = \rho([A | B])$.