
   Theorem 1.1
For every square matrix A  of order n , A A A A A In( ) ( ) .adj adj = =  

Proof 
For simplicity, we prove the theorem for n = 3 only.
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By using the above equations, we get 
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where I3   is the identity matrix of order 3. 
So, by equations (1) and (2), we get  A A A A A I( ) ( ) .adj adj = = 3

A = 0  and  so A A A A On( ) ( ) ,adj adj = =  where On   
Note
 If A is a singular matrix of order n , then 

denotes zero matrix of order n.

  Theorem 1.2
If a square matrix has an inverse, then it is unique. 

Proof
Let A  be a square matrix order n  such that an inverse of A  exists. If possible, let there be two 

inverses B and C of A.Then, by definition, we have AB = BA = In and  AC = CA = In . 

Using these equations, we get 
=C C =I C AB( ) = CAn n( ) =B I =B B.  

Hence the uniqueness follows. 
 Notation  The inverse of  an  A  is denoted by A−1.
Note 

AA−1 1A A= =− In .
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  Theorem 1.3
Let A  be square matrix of order n.Then, A−1 exists if and only if A  is non-singular. 

Proof
−1 1A A= =− In .Suppose that A−1 exists. Then AA

By the product rule for determinants, we get 

det(AA ) det( )det(A A− −1 1) det= = =−1( )det(A A) det I( )n =1.So, A det(= ≠A) .0

 Hence A  is non-singular. 
Conversely, suppose that A  is non-singular. 

 Then A ¹ 0. By Theorem 1.1, we get              

AA )A A A In .(adj =) (ad  j =

So, dividing by A , we get A
A

 A
A

 A Aadj1 adj1







=







= In.

Thus, we are able to find a matrix B
A

=
1 adj A  such that AB = BA = In .

Hence, the inverse of A exists and it is given by  A
A

−−1 ==
1 adj A.

Theorem 1.4
If A  is non-singular, then

           (i) A
A

−1 =
1 (ii)  ( TA

−1
= −A

T) ( )1  (iii) λ( )
λ

A A−1 =
1 −1,   where  λ  is a non-zero scalar.

Proof 
Let A  be non-singular. Then A ¹ 0 and A−1 exists. By definition, 

AA− −1 1A A= = In . …(1)

(i) − −1 1= = .By (1), we get AA A A In
Using the product rule for determinants, we get AA In= 1.=−1

A
 Hence, A−1 =

1 .

(ii) From (1), we get AA( − =1 A A1−T T

n) ( ) = I( )T .

 Using the reversal law of transpose, we get ( 1− T
A A =T TA A

T

n) ( ) = I−1 .Hence

T( )T −1) =A A( −1 .

(iii) Since λ  is a non-zero number, from (1), we get  λ( )A 11 −A




 = 





λ λ 

 λ =
1 A−1 ( )A In .

 So, λ( )A A−1 =
1 −1.
λ
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         Theorem 1.5  (Left Cancellation LaW)
Let A B, ,  and C be square matrices of order n. If A is non-singular and AB = AC, then  =B C.

−1 1A A= =− In . Taking AB = AC and pre-multiplying
Proof

Since A is non-singular, A−1 exists and AA

both sides by A−1, we get A A( ) =B A− −1 1 AC( ). By using the associative property of matrix 

multiplication and property of inverse matrix, we get =B C.

  Theorem1.6  (Right Cancellation Law)

− −1 1A A= = In .  Taking BA = CAand post-multiplying

Let A B, ,  and C  be square matrices of order n. If A  is non-singular and BA = CA, then  =B C.

Proof

 Since A  is non-singular, A−1 exists and AA

both sides by A−1,  we get BA( ) =A C− −1 1( )A A .By using the associative property of matrix multiplication 

and property of inverse matrix, we get =B C.

Note
If A  is singular and AB = AC  or BA = CA, then B and C need not be equal. For instance, 

consider the following matrices:

C












= 





1 1
2 2

1 − 1
0 1

 − 10
1 1

=  A B =, . and 

We note that  A 0 and = =AB A  but C B; .≠ C  

  Theorem 1.7  (Reversal Law for Inverses)

 If A  and B  are non-singular matrices of the same order, then the product AB is also non-singular 

and AB( ) =− −1 1B A−1.

Proof

 Assume that A  and B  are non-singular matrices of same order n.  Then, | |  A B¹ ¹0 0, , both 

 and A B− −1 1 exist and they are of order n.The products AB and B A− −1 1  can be found and they are also 

of  order n. Using the product rule for determinants, we get AB | |A B= ≠| | 0.So, AB is non-singular 

and 
)AB( )( AI( ) ;

(

B A (A B( − ))1B A A A− −1 1= =A I
B A− AB)( ) = (B

nn
− 1− 1−

−

= =1

1 1 −−1 1A A−( )) (B B I B= =− −1 1) .B B = In n

 Hence         AB( ) =− −1 1B A−1.
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 Theorem 1.8 (Law of Double Inverse)

If A is non-singular, then A−1 is also non-singular and ( ) 1− −1A = A .

Proof
Assume that A  is non-singular. Then A ≠ 0,  and  −1A  exists.

 Now A
A

−1 1
= ≠ 0 ⇒ A−1 is also non-singular, and AA− −1 1A A= = I.

Now, AA = ⇒I A− −1 1( )−1
A I= ⇒ −1( )−1

A A−1 = I. ... (1)

= .APost-multiplying by A  on both sides of equation (1), we get −1A
−( ) 1
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   Theorem 1.9
If A  is a non-singular square matrix of order n ,  then

(i) adj  A
A

−1) = adj −1( ) =A A( 1 (ii) adj A =| |A n−1

(iii)

 (v)

 adj adj( ) =  A A| |n−2 A

n−( )1 2

 adj adj( ) =A A

(iv) ad ( ) =λ λ n−1j adjA A( ), λ  is a nonzero scalar

(vi) adj ( ) = adA AT Tj( )
Proof

Since A  is a non-singular square matrix, we have A ¹ 0 and so, we get

(i) A A A) = AA −− 11 = adj ⇒ =  A A| | A−1 ⇒

−1( )−1
= ( A−1 11

A| |
( ) (

A| |
adj adj 

−1)) =
1
A| |

A .

A Replacing A  by A−1  in adj A = A−1 , we get adj A A A
A

A− −=)( ( )−11 1 −1
=

1 .

Hence, we get ad( j  A adj A
A

−1) = −1( ) =
1 A .

(ii) adj (A A )A A=) adj ( =  | |A In  ⇒  det a( djA A A)  de) t | |( )A In( =)) etd ((adj A =

 ⇒  A adj A | | = ⇒nA dj a A = A| | −1 .n

(iii) For any non-singular matrix B of  order n,  we have adj (B B =) adj ( )B B =  | |B In.

Put =B Aadj .  Then, we get   adj Aadj ( ) adj adjA A( )( ) =  | In| .

So, since adj =A A| |n−1 , we get adj ( ) (ad (j adjA A |n−A I1
n=)) | .

APre-multiplying both sides by A, we get A Aadj ( ) adj adj ( )( )( ) =  A | |n−( )1A In .

Using the associative property of matrix multiplication, we get 

A ( adj ( ))A adj adj( ) =  A A | |n( )−1A In .

Hence, we get ( A I |n−A 1 An ) adj adj( )( )A =  | .That is, adj adj( ) =  A A| |n−2 A.

A(iv) Replacing A  by λA  in adj( )A = A−1 ,  we get

1− nA A− −1 1= =λ λ nA A−1 dj( ) .a
λ

ad ( )λ λA A ( )= =λ λ−A A1j 1n

(v) By (iii), we have adj adj ( ) =A A| |n−2 A . So, by taking determinant on both sides, we get

A| | A| || |= A 2−( )n( ) A A
n na dj adj( )A = =

2 − +2 1n =n A−2 n−( )1 2

.

(vi) Replacing A by AT  in A A−1 =
1
A| |

a dj  , we get A
A

AT T( ) = ( )−1 1
T| |

adj  and hence, we 

get  ad Aj adj A |A A | | −AA | |A A( ) =T | |AT T
=) TT( ) = ( ) =1 ( 







−
| −

A| |
1 1 1

TT

= adj ( )A T .
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Note

If  A  is a non-singular matrix of order 3, then, A| |¹ 0 . By property (ii), we get adjA =| |A 2  and 

so, adj A is positive. Then, we get adj AA = ± .

So, we get A 1 == ±±−− 1 adj A.
adj A

Further, by the property (iii), we get A =
1 adj adj( ) A .
A

Hence,  if A  is a non-singular matrix of order 3, then, we get A
A

== ±± A))1
adj 

ad (j adj(  .

  Theorem 1.10 

If A  and B  are any two non-singular square matrices of order n ,  then 

  adj(AB =) (adj )(adj B A). 

Proof
 Replacing A  by AB  in adj(A)  =  A A−1 , we get

adj(AB)  =  AB| | AB( ) = | |B B− −1 1( ) | |A A−1( ) = adj( ) adjB A( ) .

 Theorem 1.11
The rank of a matrix in row echelon form is the number of non-zero rows in it. 

 The rank of a matrix which is not in a row-echelon form, can be found by applying the following 
result which is stated without proof. 

  Theorem 1.12
 The rank of a non-zero matrix is equal to the number of non-zero rows in a row-echelon form 
of the matrix.

 Theorem 1.13
 Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary 
row operations. 

  Theorem 1.14 (Rouche’-Capelli Theorem)
 A system of linear equations, written in the matrix form as AX = B,  is consistent if and only if the 
rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, ( ) =ρ ρ([A A | B]).
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