EXERCISE 1.8

Choose the Correct answer:

1. If $|(())||\mid$, then the order of the square matrix A is
(a) 3
(b) 4
(c) 2
(d) 5
2. If A is a non-singular matrix such that and , then
(a) A
(b) B
(c) I
(d)
3. If $\quad+\quad$ and , then $\frac{\mid}{\|}$
(a)-
() -
(c) -
(d) 1
4. If $* \quad+\quad * \quad+$ then A
(a) * $\quad+$
(b) * +
(c) ${ }^{*}+$
(d) * +
5. If * +
(a)
(b) -
(c)
(d)
6. If $\quad * \quad+\quad * \quad|()|$
(a) -40
(b) -80
(c) -60
(d) -20
7. If $[\quad]$ is the adjoint of matrix A and \| \| , then is
(a) 15
(b) 12
(c) 14
(d) 11
8. If []] then the value of is
(a) 0
(b) -2
(c) -3
(d) -1
9. If A, B and C are invertible matrices of some order, then which one of the following is not true?
(a)
| |
(b) $\quad(\quad) \quad(\quad)(\quad)(c)$
()
(d) ()
10. If $(\quad * \quad+$ and $\quad * \quad+$, then
(a)*
$+$
(b) * +
$(\mathrm{c})^{*}+$
(d) * $\quad+$
11. If is symmetric, then
(a)
(b) ()
(c)
(d) ()
12. If A is a non-singular matrix such that $\quad * \quad+$ then ()
(a) * +
(b) * +
(c) ${ }^{*}+$
(d) * $\quad+$
13. If $\left[\begin{array}{l}- \\ -\end{array}\right]$, then the value of x is
(a)
(b) -
(c) -
(d) -
14. If $]$ and $A B=I$, then $B=$
(a)(-)
(b) (_)
(c) ()
(d) (-)
15. If $\quad * \quad+$ and $(\quad) \quad * \quad+$ then $k=$
(a) 0
(b) $\sin \theta$
(c) $\cos \theta$
(d) 1
16. If * + be such that then is
(a) 17
(b) 14
(c) 19
(d) 21
17. If $\quad+\quad+$ and $\quad * \quad+\quad()$ is
$(\mathrm{a})^{*}+$
(b)*
$+$
(c)*
(d)* $\quad+$
18. The rank of the matrix [
]
(a) 1
(b) 2
(c) 4
(d) 3
19. If
(a) (/) (/)
(b) (/)
| | | | | then the values of x and y are respectively,
20. Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and is a scalar, then () ()
(iv) () () \||
(a) Only (i)
(b) (ii) and (iii)
(c) (iii) and (iv)
(d) (i), (ii) and (iv)
21. If () (\mid))then the system $A X B=$ of linear equationsis
(a) consistent and has a unique solution
(b) consistent
(c) consistent and has infinitely many solution
(d) inconsistent
22. If and the systemof equations () () () () has a non-trivial solution then is
(a) -
(b) -
(c) -
(d) -
23. The augmented matrix of a system of linear equations is [
]. The system has infinitely many solutions if
(a)
(b)
(c)
(d)
24. Let [] . If B is the inverse of A, then the value of x is
(a) 2
(b) 4
(c) 3
(d) 1
25. If
], then
() is
(a) $[\quad]$
(b) $[$
]
(c) $[$
(d) $[$

EXERCISE 2.9

Choose the correct or the most suitable answer from the given four alternatives :

1. is
(a) 0
(b) 1
(c) -1
(d) i
2. The value of $\sum(\quad)$ is
(a) $1+i$
(b) i
(c) 1
(d) 0
3. The area of the triangle formed by the complex numbers and in the Argand's diagram is
(a) $-| |$
(b) | |
(c) +1
(d) 11
4. The conjugate of a complexnumber is - Then, the complex number is
(a) -
(b) -
(c) -
(d) -
5. If $\frac{\left(\sqrt{ }^{-}\right)(\quad)}{(\quad)}$ then $|\mid$ is equal to
(a) 0
(b) 1
(c) 2
(d) 3
6. If z is a non-zero complex number, such that

- | | is
(a) -
(b) 1
(c) 2
(d) 3

7. If | $\quad \mid \quad$ then the greatest value of $|\mid$ is
$\overline{(a) \sqrt{ }}$
(b) $\sqrt{ }$
(c) $\sqrt{ }$
(d) $\sqrt{ }$
8. If | \mid, then the least value of $|\mid$ is
(a) 1
(b) 2
(c) 3
(d) 5
9. If $\|$, then the value of ___ is
(a) z
(b) ${ }^{-}$
(c) -
(d) 1
10. The solution of the equation | | is
(a) -
(b) -
(c)
(d) -
11. If | |
(a) 1
|| | | , and |
| then the value of \mid
| is
(b) 2
(c) 3
(d) 4
12. If z is a complex number such that and - ||
(a) 0
(b) 1
(c) 2
(d) 3
13. be three complex numbers such that then is
(a) 3
(b) 2
(c) 1
(d) 0
14. If — is purely imaginary, then || is
(a) -
(b) 1
(c) 2
(d) 3
15. If is a complex number such that | | |, then the locus of z is
(a) real axis
(b) imaginary axis
(c) ellipse
(d) circle
16. The principal argument of ___ is
(a) -
(b) -
(c) -
(d) -
17. The principal argument of (
(a)
(b)
(c)
(d)
18. If $(\quad)(\quad)(\quad) \quad$,then $\quad(\quad)$ is
(a) 1
(b) i
(c)
(d)
19. If is a cubic root of unity and () , then (A, B) equals
(a) $(1,0)$
(b) $(-1,1)$
(c) $(0,1)$
(d) $(1,1)$
20. The principal argument of the complex number $\frac{(\sqrt{ }) \text { is }}{(\sqrt{ })}$
(a) -
(b) -
(c) -
(d) -
21. If α and β are the roots of
then
is
(a) -2
(b) -1
(c) 1
(d) 2
22. The product of all four values of (- $\quad)^{/}$is
(a) -2
(b) -1
(c) 1
(d) 2
23. If
is a cubic root of unityand |
| , then k is equal to
(a) 1
(b) -1
(c) \sqrt{i}
(d) $-\sqrt{i}$
24. The value of $\left(\frac{\sqrt{ }}{\sqrt{ }}\right)$ is
(a) -
(b) -
(c) -
(d) -
25. If - , then the number of distinct roots of |
(a) 1
(b) 2
(c) 3
(d) 4
26. Discuss the maximum possible number of positive and negative roots of the polynomial equation
27. Discuss the maximum possible number of positive and negative roots of the polynomial equations
and . Also draw rough sketch of the graphs.
28. Show that the equation has atleast 6 imaginary solutions.
29. Determine the number of positive and negative roots of the equation
30. Find the exact number of real roots and imaginary of the equation

EXERCISE 3.7

Choose the most suitable answer:

1. A zero of is
(a) 0
(b) 4
(c)
(d)
2. If \boldsymbol{f} and \boldsymbol{g} are polynomials of degrees \boldsymbol{m} and \boldsymbol{n} respectively, and if () () (), then the degree of \boldsymbol{h} is
(a)
(b)
(c)
(d)
3. A polynomial equation in \boldsymbol{x} of degree \boldsymbol{n} always has
(a) n distinct roots
(b) n real roots
(c) n imaginary roots
(d) at most one root.
4. If, and γ are the roots of
, then \sum is-
(a) -
(b) -
(c) -
(d) -
5. According to the rational root theorem, which number isnot possible rational root of
(a) -1
(b) -
(c) -
(d) 5
6. The polynomial
has three real roots if and only if, \boldsymbol{k} satisfies
(a) | |
(b) $k=0$
(c) $|\mid>6$
(d) $|\mid \geq 6$
7. The number of real numbers in satisfying is
(a) 2
(b) 4
(c)1
(d)
8. If definitely has a positive root, if and only if
(a) $a \geq 0$
(b) $a>0$
(c) $a<0$
(d) $a 0$
9. The polynomial has
(a) one negative and tworeal roots
(b) one positive and two imaginary roots
(c) three real roots
(d) no solution
10. The number of positive roots of the polynomial $\sum \quad(\quad)$ is
(a) 0
(b) n
(c) $<n$
(d) r

QB365

Choose the correct or the most suitable answer from the given four alternatives.

1. The value of () is
(a)
(b) -
(c) -
(d)
2. If

- then
(c) -
(d)
(a)-
(b) -
is equal to

3. $\quad-\quad-\quad-\quad$ is equal to
(a)
(b)
(c) 0
(d) $\quad-$
4. If has a solution, then
(a) | | $\overline{\sqrt{v}}$
(b) $\left|\left\lvert\, \frac{}{\sqrt{ }}\right.\right.$
(c) $\left|\left\lvert\, \frac{}{\sqrt{ }}\right.\right.$
(d) $|\mid \quad \overline{\sqrt{v}}$
5. () - is valid for
(a)
(b)
(c) -

-

(d) - -
6. If
-, the value of
(d) 3
(a) 0
(b) 1
(c) 2
7. If

- for some
, the value of
is
(a) -
() -
(c) -
(d) -

8. The domain of the function defined by ()

(a)

(b)
(c)
(d)

9 If , the walue of (
(a) $\sqrt{-}$
(b) $\sqrt{-}$
(c) -
(d) -
10. $(-) \quad(\rightarrow$ is equal to
(a)-
(-)
() - (-)
(c) $-\quad(-)$
(d) (-)
11. If the function ()
(a)
(b) $[\sqrt{ }]$
(c) $[\sqrt{ }][\sqrt{ }$
(d) $[\sqrt{ }][\sqrt{ }$
12. If and are two angles of a triangle, then the third angle is
(a) -
(b) -
(c) -
(d) -
13. (-) $-\sqrt{-} /-$ Then x is a root of the equation
(a)
(b)
(c)
(d)
14. ()
(a) -
()
15. If

(b) -
(c) -
(d) -
(a)
$(\sqrt{ })$, then is equal to
16. If | | , then
(b) 0
(c)
(d)
(b)
(c) 0
(d)
(a)
17. The equation
_— is equal to
(a) no solution
(b) unique solution
(c) two solutions
(d) infinite number of solutions
18. If
(a) -
(-) -then x is equal to
(b) $\overline{\sqrt{ }}$
(c) $\overline{\sqrt{ }}$
(d) $\sqrt{-}^{-}$
19. If ()
(a) 4
(b) 5
(c) 2
(d) 3
20. ()||
is equal tc
(a) $\overline{\sqrt{ }}$
(b) $\overline{\sqrt{ }}$
(c) $\overline{\sqrt{ }}$
(d) $\overline{\sqrt{ }}$

EXERCISE 5.6

Choose the most appropriate answer.

1. The equation of the circle passing through $(1,5)$ and $(4,1)$ and touching y-axis is
() where is equal to
(a) -
(b) 0
(c) -
(d) -
2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
(a) -
(b) $\frac{\sqrt{\sqrt{2}}}{}$
(c) $\sqrt{\sqrt{ }}$
(d) -
3. The circle
intersects the line
at two distinct points if
(a)
(b)
(c)
(d)
4. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$.
(a) -
(b) -
(c) -
(d) -
5. The radius of the circle
is
(a) 1
(b) 3
(c) $\sqrt{ }$
(d) $\sqrt{ }$
6. The centre of the circle inscribed in a square formed by the lines
and
is
(a) $(4,7)$
(b) $(7,4)$
(c) $(9,4)$
(d) $(4,9)$
7. The equation of the normal to the circle

> which is parallel to the line is
(a)
(b)
(c)
(d)
8. If () be any point on
with foci () and () then
is
(a) 8
(b) 6
(c) 10
(d) 12
9. The radius of the circle passing through the point $(6,2)$ two of whose diameter are
and is
(a) 10
(b) $2 \sqrt{ }$
(c) 6
(d) 4
10. The area of quadrilateral formed with foci of the hyperbolas $-\quad-\quad$ and $\quad-\quad$ is
(a) (\quad)
(b) (\quad)
(c)
(d) \dagger)
11. If the normals of the parabola drawn at the end points of its latus rectum are tangents to the circle
() () , then the value of is
(a) 2
(b) 3
(c) 1
(d) 4
12. If
is a normal to the parabola
, then the value of k is
(a) 3
(b) -1
(c) 1
(d) 9
13.The ellipse - - is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse is
(a) $\stackrel{L}{-}^{-}$
(b) $\sqrt{ }^{-}$
(c) -
(d) -
14. Tangents are drawn tothe hyperbola - - parallel to the straight line . One of the points of contact of tangents on the hyperbola is
(a) $\left(\frac{}{\sqrt{ } \sqrt{ }}\right)$
(b) $\left(\frac{}{\sqrt{ } \sqrt{ }}\right)$
(c) $\left(\frac{}{\sqrt{ } \sqrt{ }}=\right)$
(d) $\left(\begin{array}{ll}\sqrt{-} & \sqrt{ }\end{array}\right)$
15. The equation of the circle passing through the foci of the ellipse $-\quad-\quad$ having centre at $(0,3)$ is
(a)
(b)
(c)
(d)
16. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the circle C externally, then the radius of T is equal to
$(a) \frac{\bar{v}}{\sqrt{v}}$
(b) $\stackrel{V}{ }^{-}$
(c) -
(d) -
17. Consider an ellipse whose centre is of the origin and its major axis is along x-axis. If its eccentrcity is - and the distance between its foci is 6 , then the area of the quadrilateral inscribed in the ellipse with diagonals as major and minor axis of the ellipse is
(a) 8
(b) 32
(c) 80
(d) 40
18. Area of the greatest rectangle inscribed in the ellipse - - is
(a)
(b)
(c) $\sqrt{ }$
(d) ${ }^{-}$
19. An ellipse has $O B$ as semi minor axes, F and F^{\prime} 'its foci and the angle $\boldsymbol{F B F}$ ' is a right angle. Then the eccentricity of the ellipse is
(a) $\sqrt{\sqrt{5}}$
(b) -
(c) -
(d) $\sqrt{\sqrt{ }}$
20. The eccentricity of the ellipse () () - is
(a) ${ }^{\sqrt{-}}$
(b) -
(c) $\sqrt{\sqrt{ }}$
(d) $\sqrt{\sqrt{ }}$
21. If the two tangents drawn from a point P to the parabola are at right angles then the locus of P is
(a) (b) $x=-1$
(c)
(d) $x=1$
22. The circle passing through $(-1,2)$ and touching the axis of x at $(3,0)$ passing through the point
(a) $(-5,2)$
(b) $(2,-5)$
(c) $(5,-2)$
(d) $(-2,5)$
23. The locus of a point whose distance from (-2,0) is-times its distance from the line
(a) a parabola
(b) a hyperbola
(c) an ellipse
(d) a circle
24. The values of m for which the line $\quad \sqrt{ }$ touches the hyperbola are the roots of , then the value of $(a+b)$ is
(a) 2
(b) 4
(c) 0
(d) -2
25. If the coordinates at one end of a diameter of the circle end are
(a) $(-5,2)$
(b) $(2,-5)$
(c) $(5,-2)$
(d) $(-2,5)$

EXERCISE 6.10

Choose the correct or most suitable answer :

1. If and are parallel vectors, then [$\overrightarrow{\vec{~}}$ is equal to
(a) 2
(b) -1
(c) 1
(d) 0
2. If a vector lies in the plane of and , then
(a) []
(b) $[\quad]$
(c) $[\quad]$
(d) []
3. If $\rightarrow \rightarrow$ then the value of $[\overrightarrow{ }]$ is
(a) $||\overrightarrow{|\mid}|$
(b) $-||\vec{l}||$
(c) 1
(d) -1
4. If $\overrightarrow{ }$ are three unit vectors such that is perpendicular to $\overrightarrow{ }$, and is parallel to then $(\overrightarrow{ }$) is equal to
(a)
(b) $\vec{~}$
(c)
(d) $\overrightarrow{ }$

(a) 1
(b) -1
(c) 2
(d) 3
5. The volume of the parallelepiped with its edges represented by the vectors ^ \wedge is
(a) -
(b) -
(c) π
(d) -

(a) -
(b) -
(c) -
(d) -
6. If
^, \wedge and ($\quad \rightarrow$ \Rightarrow then the value of is
(a) 0
(b) 1
(c) 6
(d) 3
7. If \rightarrow are non-coplanar, non-zero vectors such that $[\vec{~}]$ then $\{[\rightarrow \rightarrow$ is equal to
(a) 81
(b) 9
(c) 27
(d) 18
8. If $\quad \rightarrow \quad$ are three non-coplanar vectors such that $\quad \vec{~} \quad \vec{\nabla}$ then the angle between and $\overrightarrow{ }$ is
(a) -
(b) -
(c) -
(d) π
9. If the volume of theparallelepiped with as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{r})(\vec{r})(\vec{r})$ as coterminous edges is,
(a) 8 cubic units
(b) 512 cubic units
(c) 64 cubic units
(d) 24 cubic units
10. Consider the vectors \rightarrow such that $(\overrightarrow{ })\left({ }^{\rightarrow}\right.$. Let and be the planes determined by the pairs of vectors \rightarrow and respectively. Then the angle between and is
(a) 0°
(b) 45°
(c) 60°
(d) 90°
11. If $(\overrightarrow{ } \quad \overrightarrow{ })$ where \rightarrow are any three vectors such that $\overrightarrow{ }$ and \rightarrow then \square and are
(a) perpendicular
(b) parallel
(c) inclined at an angle -
(d) inclined at an angle -
 and is
(a)
(b)
(c)
(d)
12. The angle between the lines - - and - - - is
(a) -
(b) -
(c) -
(d) -
13. If the line - - lies in the plane then () is
(a) $(-5,5)$
(b) $(-6,7)$
(c) $(5,-5)$
(d) $(6,-7)$
14. The angle between the line ($\left.\left.{ }^{\wedge} \wedge^{\wedge}\right) \quad\left({ }^{\wedge}\right){ }^{\wedge}\right)$ and the plane $\left({ }^{\wedge}\right)$ is
(a) 0°
(b) 30°
(c) 45°
(d) 90°
15. The coordinates of the point where the line $\left(\wedge \wedge{ }^{\wedge}\right) \quad\left(\wedge^{\wedge}\right)$ meets the plane $(\wedge \wedge$) are
(a) $(2,1,0)$
(b) $(7,-1,-7)$
(c) $(1,2,-6)$
(d) $(5,-1,1)$
16. Distance from the origin tothe plane
is
(a) 0
(b) 1
(c) 2
(d) 3
17. The distance between the planes
and
is
(a) $\frac{\sqrt{ }-}{\sqrt{ }}$
(b) -
(c) $\stackrel{\downarrow}{ }^{-}$
(d) $\frac{}{\sqrt{ }}$
18. If the direction cosines of a line are - - - then
(a)
(b) $\sqrt{ }$
(c) $\mathrm{c}>0$
(d) $0<$ c <1
19. The vector equation (^ ^ ^) (${ }^{\wedge}$) represents a straight line passing through the points
(a) (0, 6, -1) and (1, -2, -1)
(b) (0, 6, -1) and (1,-4, -2)
(c) (1, -2, -1) and ($1,4,-2$)
(d) (1, -2, -1) and (0, -6, 1)
20. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane
, then the values of k are
(a)
(b)
(c) $-3,9$
(d) $3,-9$
21. If the planes $\left(\wedge^{\wedge}\right)$ and $\left(\wedge^{\wedge}\right)$ are parallel, then the value of λ and μ are
(a) -
(b)
(c) -
(d) -
22. If the length of the perpendicular from the origin to the plane
is , then the value of λ is
(a) $\sqrt{ }$
(b) $\sqrt{ }$
(c) 0
(d) 1
