https://www.qb365.in/materials/

EXERCISE 1.8

Choose the Correct answer	•		
1. If $ (()) $, then the ord	er of the square matrix A is		
(a) 3	(b) 4	(c) 2	(d) 5
2. If <i>A</i> is a non-singula	r matrix such that and	l , then	
(a) <i>A</i>	(b) <i>B</i>	(c) <i>I</i>	(d)
3. If * +	and , then $\frac{ \cdot }{ \cdot }$		
(a)-	() -	(c) –	(d) 1
4. If * + * + th	en A		
(a) * +	(b) * +	(c) * +	(d) * +
5. If * +			
(a)	(b) —	(c)	(d)
6. If * + *	+ ()		
(a) -40	(b) -80	(c) -60	(d) -20
7. If [] is the	adjoint of matrix A and	, then is	
(a) 15	(b) 12	(c) 14	(d) 11
8. If []	[] then	the value of is	
(a) 0	(b) -2	(c) -3	(d) -1
9. If A, B and C are invertible	e matrices of some order, then w	which one of the following is no	ot true?
(a)	(b) () ()()(c) ()	(d) ()
10. If () *	+ and * + , then	1	
(a)* +	(b) * +	(c) * +	(d) * +
11. If is symmetric, th	en		
(a)	(b) ()	(c)	(d) ()
12. If <i>A</i> is a non-singular matrix	rix such that * +	then ()	
(a) * +	(b) * +	(c) * +	(d) * +
13. If []	, then the value of x is		

https://www.qb365.in/materials/

14. If [] a	nd $AB = I$, the	n B =				
(a)(-)	(b) (_)		(c) ()		(d) (-)	
15. If * +:	and ()	* + then k	=			
(a) 0	(b) sinθ		(c) cosθ		(d) 1	
16. If * + be such t	hat	then is				
(a) 17	(b) 14		(c) 19		(d) 21	
17. If * + and	*	+ () is	8			
(a)* +	(b)*	+	(c)* +		(d)*	ł
18. The rank of the matrix []				
(a) 1	(b) 2		(c) 4		(d) 3	
19. If	I		then	the values of x	and y are respec	tively,
(a) (/) (/)	(b) (/)	(/) (c) (/) (/) (d) ^(/) ((/)		
20. Which of the following is	are correct?					
 (i) Adjoint of a symmetric matrix (ii) Adjoint of a diagonal matrix (iii) If A is a square matrix of a diagonal matrix (iv) () () (a) Only (i) 	rix is also a d	iagonal matrix. a scalar, then		()	(d) (i), (ii) and	(iv)
-		of linear equatio			. , . , . , ,	
(a) consistent and has a uniqu(c) consistent and has infinite22. If and the syst			(b) consistent (d) inconsisten () (nt)	()	has a
non-trivial solution then is						
(a) —	(b) —		(c) —		(d) —	
23. The augmented matrix of	a system of lin	near equations is	Ι]. The sys	stem has infinite	ly many
solutions if (a)	(b)		(c)		(d)	
24. Let []	[] . If <i>B</i> is	the inverse of A	A, then the value	e of x is	
(a) 2	(b) 4		(c) 3		(d) 1	
25. If [], then	() is					
(a) []	(b) []	(c) []	(d) [I

QB365

https://www.qb365.in/materials/

EXERCISE 2.9 from the given four alternativ

EXERCISE 2.9 Choose the correct or the most suitable answer from the given four alternatives :			
1. is (a) 0	(b) 1	(c) -1	(d) <i>i</i>
2. The value of \sum ((a) 1+ <i>i</i>) is (b) <i>i</i>	(c) 1	(d) 0
3. The area of the triangle for (a) -	rmed by the complex numbers (b)	and in the Argand's (c) +	diagram is (d)
4. The conjugate of a comple	exnumber is — Then, the comp	plex number is	
(a) —	(b) ——	(c) <u> </u>	(d) —
5. If $\frac{(\sqrt{-})()}{()}$ th	en is equal to		
(a) 0	(b) 1	(c) 2	(d) 3
6. If <i>z</i> is a non-zero complex (a) –	number, such that ⁻ (b) 1	is (c) 2	(d) 3
$\frac{7. \text{ If } }{(a)} \qquad $	e greatest value of $ $ is (b) $$	(c) v	(d) √
8. If $ - $, then the least			
(a) 1	(b) 2	(c) 3	(d) 5
9. If , then the value of	isis		
(a) <i>z</i>	(b) ⁻	(c) –	(d) 1
10. The solution of the equat			
(a) –	(b) –	(c) –	(d) –
11. If (a) 1	, and (b) 2	then the value of (c) 3	(d) 4
12. If z is a complex number(a) 0	such that and – (b) 1	 (c) 2	(d) 3
	nplex numbers such that	and	,
then is (a) 3	(b) 2	(c) 1	(d) 0
14. If — is purely imaginary	<i>y</i> , then is		
(a) –	(b) 1	(c) 2	(d) 3
15. If is a complete is a complete (a) real axis	ex number such that (b) imaginary axis	, then the locus of <i>z</i> is (c) ellipse	(d) circle

https://www.qb365.in/materials/

16. The principal argument o	f —— is		
(a) —	(b) —	(c) —	(d) —
17. The principal argument o (a)	f () is (b)	(c)	(d)
	× /		(u)
18. If ()()()	(b) i , then	() is (c)	(d)
19. If is a cubic root of			
(a) $(1,0)$ (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) (-1,1)	, then (A, B) equals (c) (0,1)	(d) (1,1)
	· · · · · · (√) · -		
20. The principal argument of	f the complex number $\frac{(\sqrt{)}}{(\sqrt{)}}$)	
(a) —	(b) –	(c) —	(d) –
21. If α and β are the roots of	then	is	
(a) -2	(b) -1	(c) 1	(d) 2
	alues of $(-)$ is		
22. The product of all four va $(a) -2$	(b) -1 (b) -1	(c) 1	(d) 2
(u) 2	(0) 1		(d) 2
23. If is a cubic root o	f unity and	, then k is equal to	
(a) 1	(b) -1	(c) \sqrt{i}	(d) $-\sqrt{i}$
24. The value of $(\frac{}{})$ is			
(a) —	(b) —	(c) —	(d) —
25. If $-$, then the n	umber of distinct roots of	I	
(a) 1	(b) 2	(c) 3	(d) 4

https://www.qb365.in/materials/

EXERCISE 3.6

1. Discuss the maximum pos		re and negative roots of the polynomia	al equation	
	ossible number of pos ugh sketch of the graph	itive and negative roots of the poly as.	nomial equations	and
3. Show that the equation		has atleast 6 imaginary solution	ons.	
4. Determine the number of	positive and negative re	oots of the equation		
5. Find the exact number of	real roots and imaginar	y of the equation		
		EXERCISE 3.7		
Choose the most suitable and	swer:			
1. A zero of is				
(a) 0	(b) 4	(c)	(d)	
2. If <i>f</i> and <i>g</i> are polynomia	als of degrees <i>m</i> and	<i>n</i> respectively, and if () ()()	, then the degree of <i>h</i> is	
(a)	(b)	(c)	(d)	
3. A polynomial equation in	n x of degree <i>n</i> always	shas		
(a) <i>n</i> distinct roots	(b) <i>n</i> real roots	(c) <i>n</i> imaginary roots	(d) at most one root.	
4. If , and γ are the roots of	Î	, then \sum is–		
(a) —	(b) —	(c) –	(d) —	
5. According to the rationa	l root theorem, which	number is not possible rational roo	ot of	
(a) -1	(b) –	(c) –	(d) 5	
6. The polynomial	has three real 1	roots if and only if, <i>k</i> satisfies		
(a)	(b) $k = 0$	(c) $ > 6$	(d) $ \ge 6$	
7. The number of real num	bers in satisfyi	ing is		
(a) 2	(b) 4	(c)1	(d)	
8. If	definitely has a	positive root, if and only if		
(a) $a \ge 0$	(b) $a > 0$	(c) <i>a</i> < 0	(d) <i>a</i> 0	
9. The polynomial	has			
(a) one negative and tworeal	roots	(b) one positive and two imaginary	y roots	
(c) three real roots		(d) no solution		
10. The number of positive	roots of the polynomi	al \sum () is		
(a) 0	(b) <i>n</i>	(c) < <i>n</i>	(d) <i>r</i>	

Exekctsps4.6/www.qb365.in/materials/

Choose the correct or the most suitable answer from the given four alternatives.

1. The value of () is			
(a)	(b) –	(c) –	(d)
2. If	— then is equa	l to	
(a)—	(b) –	(c) –	(d)
3. – –	- — is equal to		
(a)	(b)	(c) 0	(d) —
4. If	has a solution, then		
(a) $ \frac{1}{\sqrt{2}}$	(b) $ \frac{1}{\sqrt{2}}$	(c) $ \overline{\sqrt{}}$	(d) $ \overline{\sqrt{}}$
5. () –	is valid for		
(a)	(b)	(c) – –	(d) – —
6. If	—, the value of		is
(a) 0	(b) 1	(c) 2	(d) 3
7. If $-$ for	some , the value of is		
(a) —	() -	(c) —	(d) –
8. The domain of the f	Function defined by () $$	is	
(a)	(b)	(c)	(d)
9 If, the value of () is		
(a) $\sqrt{-}$	(b) √	(c) -	(d) –
10. (-)	(-) is equal to		
(a)- (-)	()- (-)	(c)- (-)	(d) (-)
11. If the function ()	() then whether each		
	(), then x belongs to		
(a)	(b) [√]	(c) [√] [√ _]	(d) [√] [√]
(a) 12. If and	(b) $\left[\sqrt{}\right]$ are two angles of a triangle, the	(c) $\left[\right] \left[\right]$ [$$] n the third angle is	
(a)	(b) [√]	(c) [√] [√ _]	(d) $[] []$
(a) 12. If and	(b) $\left[\sqrt{}\right]$ are two angles of a triangle, the	(c) $\left[\right] \left[\right]$ n the third angle is (c) –	
(a) 12. If and (a) –	 (b) [√] are two angles of a triangle, the (b) — 	(c) $\left[\right] \left[\right]$ n the third angle is (c) –	
(a) 12. If and (a) - 13. (-) (a) 14. ()	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ – . Then x is a root of the (b) ()	(c) $\left[\right] \left[\right]$ [$$] in the third angle is (c) - the equation (c)	(d) – (d)
(a) 12. If and (a) – 13. (–) (a)	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ – . Then x is a root of t (b) () (b) –	(c) $\left[\right] \left[\right]$ [$$] in the third angle is (c) – the equation	(d) –
(a) 12. If and (a) – 13. (–) (a) 14. () (a) – 15. If $(\sqrt{)}$	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ – . Then x is a root of the (b) () (b) – ($\sqrt{-}$) , then	(c) $\left[\right] \left[\right]$ [$$] in the third angle is (c) - the equation (c) (c) - is equal to	(d) – (d) (d) –
(a) 12. If and (a) - 13. (-) (a) 14. () (a) - 15. If $(\sqrt{)}$ (a)	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ – . Then x is a root of t (b) () (b) – ($\sqrt{-}$) , then (b)0	(c) $\left[\right] \left[\right]$ [$$] in the third angle is (c) - the equation (c) (c) -	(d) – (d)
(a) 12. If and (a) – 13. (–) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ – . Then x is a root of the (b) () (b) – ($\sqrt{-}$) , then (b)0 — (b)0 = (b)0 = (b)0 — (b)0 (b)0 (b)0 (b)0 (b)0 (b)0 (b)0 (b)0	(c) $\left[\right] \left[\right]$ [in the third angle is (c) - the equation (c) (c) - is equal to (c)	(d) – (d) (d) – (d)
(a) 12. If and (a) – 13. ($-$) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then (a)	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-/}$ – . Then x is a root of the (b) () (b) – ($\sqrt{-}$) , then (b)0 — (b) — (b) — (b) 0 — (b)	(c) $\left[\right] \left[\right]$ [$$] in the third angle is (c) - the equation (c) (c) - is equal to	(d) – (d) (d) –
(a) 12. If and (a) – 13. (–) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then (a) 17. The equation	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ –. Then x is a root of the (b) () (b) – ($\sqrt{-}$), then (b)0 — is equal to (b) ($\frac{1}{\sqrt{-}}$ has	(c) $\left[\right] \left[\right]$ in the third angle is (c) - the equation (c) (c) - is equal to (c) (c) 0	(d) – (d) (d) – (d) (d)
(a) 12. If and (a) – 13. (–) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then (a) 17. The equation (a) no solution	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ Then x is a root of the (b) () (b) - ($\sqrt{-}$), then (b)0 — is equal to (b) ($\frac{1}{\sqrt{-}}$ has (b) unique solution	(c) $\left[\right] \left[\right]$ in the third angle is (c) - the equation (c) (c) - is equal to (c) (c) 0	(d) – (d) (d) – (d)
(a) 12. If and (a) – 13. ($-$) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then (a) 17. The equation (a) no solution 18. If	(b) $[]$ are two angles of a triangle, then (b) — $\sqrt{-}/$ Then x is a root of the (b) (b) - ($\sqrt{-}$), then (b) - ($\sqrt{-}$), then (b) 0 — is equal to (b) ($\frac{1}{\sqrt{-}}$ has (b) unique solution (-) -then x is equal to	(c) $\left[\right] \left[\right]$ in the third angle is (c) - the equation (c) (c) - is equal to (c) (c) 0 (c) two solutions (d)	 (d) – (d) (d) – (d) (d) (d) infinite number of solutions
(a) 12. If and (a) – 13. ($-$) (a) 14. () (a) – 15. If $(\sqrt{)}$ (a) 16. If , then (a) 17. The equation (a) no solution 18. If (a) –	(b) $[]$ are two angles of a triangle, then (b) $\sqrt{-/}$ Then x is a root of the (b) (b) - ($\sqrt{-}$), then (b) - ($\sqrt{-}$), then (b) 0 	(c) $\left[\right] \left[\right]$ in the third angle is (c) - the equation (c) (c) - is equal to (c) (c) 0	(d) – (d) (d) – (d) (d)
(a) 12. If and (a) – 13. ($-$) (a) 14. () (a) – 15. If ($$) (a) 16. If , then (a) 17. The equation (a) no solution 18. If (a) – 19. If ()	(b) $[]$ are two angles of a triangle, then (b) $\sqrt{-}/$ Then x is a root of the (b) () (b) ($\sqrt{-}$), then (b) ($\sqrt{-}$), then (b) 0 ($\frac{1}{\sqrt{-}}$ has (b) unique solution (-)then x is equal to (b) $\frac{1}{\sqrt{-}}$ (-) , then the value of is	(c) $\left[\right] \left[\right]$ in the third angle is (c) - (c) - (c) - (c) - (c) - (c) 0 (c) 0 (c) two solutions (d) (c) $$	(d) – (d) (d) – (d) (d) infinite number of solutions (d) \checkmark
(a) 12. If and (a) $-$ 13. ($-$) (a) 14. () (a) $-$ 15. If ($$) (a) 16. If , then (a) 17. The equation (a) no solution 18. If (a) $-$ 19. If () (a) 4	(b) $[]$ are two angles of a triangle, then (b) $\sqrt{-/}$ Then x is a root of the (b) () (b) ($\sqrt{-}$), then (b) 0 ($\frac{1}{\sqrt{-}}$ has (b) unique solution (-) -then x is equal to (b) $\frac{1}{\sqrt{-}}$ (-) , then the value of is (b) 5	(c) $\left[\right] \left[\right]$ in the third angle is (c) - the equation (c) (c) - is equal to (c) (c) 0 (c) two solutions (d)	 (d) – (d) (d) – (d) (d) (d) infinite number of solutions
(a) 12. If and (a) – 13. ($-$) (a) 14. () (a) – 15. If ($$) (a) 16. If , then (a) 17. The equation (a) no solution 18. If (a) – 19. If ()	(b) $[]$ are two angles of a triangle, then (b) $\sqrt{-}/$ Then x is a root of the (b) () (b) ($\sqrt{-}$), then (b) ($\sqrt{-}$), then (b) 0 ($\frac{1}{\sqrt{-}}$ has (b) unique solution (-)then x is equal to (b) $\frac{1}{\sqrt{-}}$ (-) , then the value of is	(c) $\left[\right] \left[\right]$ in the third angle is (c) - (c) - (c) - (c) - (c) - (c) 0 (c) 0 (c) two solutions (d) (c) $$	(d) – (d) (d) – (d) (d) infinite number of solutions (d) \checkmark

https://www.qb365.in/materials/

EXERCISE 5.6

Choose the most appropria 1. The equation of the circle		ugh (1,5) and (4,1) a	and touching y -axis is	
	() where is ec	qual to	
(a) —	(b) 0		(c) —	(d) —
2. The eccentricity of the hy	perbola whose	e latus rectum is 8 a	nd conjugate axis is equal t	o half the distance between the foci is
(a) _	(b) <u>_</u>		(c) <u>_</u>	(d) –
3. The circle	inte	ersects the line	at two distinct poi	ints if
(a)	(b)		(c)	(d)
4. The length of the diameter	er of the circle	which touches the <i>y</i>	x -axis at the point (1,0) and	l passes through the point $(2,3)$.
(a) –	(b) –		(c)—	(d) -
5. The radius of the circle			is	
(a) 1	(b) 3		(c)	(d) $$
6. The centre of the circle in	scribed in a sc	quare formed by the	lines an	nd is
(a) (4,7)	(b) (7,4)		(c) (9,4)	(d) (4,9)
7. The equation of the norm	al to the circle	•	which is parallel	to the line is
(a)	(b)		(c)	(d)
8. If () be any point on	l	with foci	() and () then	is
(a) 8	(b) 6		(c) 10	(d) 12
9. The radius of the circle pa	assing through	the point $(6,2)$ two	of whose diameter are	and is
(a) 10	(b) 2√		(c) 6	(d) 4
10. The area of quadrilateral	formed with	foci of the hyperbol	as $ -$ and $-$	— is
(a) ()	(b) ()	(c)	(d) ()
11. If the normals of the par	abola	drawn at the end p	oints of its latus rectum are	e tangents to the circle
() () ,	then the value	of is		
(a) 2	(b) 3		(c) 1	(d) 4
12. If is a normal	l to the parabo	ola , then the	e value of k is	
(a) 3	(b) -1		(c) 1	(d) 9
13.The ellipse — —	is inscribe	ed in a rectangle <i>R</i> w	whose sides are parallel to th	e coordinate axes. Another ellipse
passing through the poin	t (0,4) circum	scribes the rectangle	R. The eccentricity of the	ellipse is
(a)√	(b) <u>√</u>		(c) –	(d) –
14. Tangents are drawn toth	ne hyperbola	— — paralle	el to the straight line	. One of the points of contact of

tangents on the hyperbola is

https://www.qb365.in/materials/

(a) (<u> </u>	(b) (<u>, √</u>)	(c) (<u>, √</u>)	(d) (√ √)
15. The equation of the circle	passing through the foci of the	ellipse — — having ce	entre at (0,3)is
(a)	(b)	(c)	(d)
16. Let <i>C</i> be the circle with ce	entre at $(1,1)$ and radius =1. If T	is the circle centered at (0,y) pa	assing through the origin and
touching the circle C externa	lly, then the radius of T is equa	lto	
$(a) \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$	(b)√	(c) –	(d) –
17. Consider an ellipse whose	e centre is of the origin and its	major axis is along <i>x</i> -axis. If it	s eccentrcity is – and the distance
between its foci is 6, then the ellipse is	e area of the quadrilateral inscri	bed in the ellipse with diagona	ls as major and minor axis of the
(a) 8	(b) 32	(c) 80	(d) 40
18. Area of the greatest rectar	ngle inscribed in the ellipse —	— is	
(a)	(b)	(c) $$	(d) -
19. An ellipse has <i>OB</i> as semi ellipse is	i minor axes, F and F ' its foci as	nd the angle FBF ' is a right an	gle. Then the eccentricity of the
(a) <u>√</u>	(b) –	(c) –	(d) $\overline{\sqrt{}}$
20. The eccentricity of the ell	ipse () () —	is	
(a) <u> </u>	(b) -	(c) 	(d) $\overline{\sqrt{}}$
21. If the two tangents drawn	from a point P to the parabola	are at right angles the	n the locus of <i>P</i> is
(a) (b) $x = -1$	(c)	(d) <i>x</i> =1	
22. The circle passing through	h (-1,2) and touching the axis o	f x at $(3,0)$ passing through the	point
(a) (-5, 2)	(b) (2,-5)	(c) (5, -2)	(d) (-2,5)
23. The locus of a point whose	se distance from (-2,0) is-times	its distance from the line	_
(a) a parabola	(b) a hyperbola	(c) an ellipse	(d) a circle
24. The values of <i>m</i> for which value of (a+b) is	h the line $\sqrt{1000}$ touc	thes the hyperbola	are the roots of , then the
(a) 2	(b) 4	(c) 0	(d) -2
25. If the coordinates at one e	end of a diameter of the circle	are	(11,2) the coordinates of the other
end are			
(a) (-5, 2)	(b) (2,-5)	(c) (5, -2)	(d) (-2,5)

QB365

https://www.qb365.in/materials/

EXERCISE 6.10 Choose the correct or most suitable answer :				
1. If and are parallel vectors				
(a) 2	(b) -1	(c) 1	(d) 0	
2. If a vector lies in the plane	of and, then			
(a) []	(b) []	(c) []	(d) []	
3. If $\vec{}$ then the value of $[\vec{}]$ i	S			
(a) [']	(b) - ⁻	(c) 1	(d) -1	
4. If are three unit vector	ors such that is perpendicular	to $$, and is parallel to then	() is equal to	
(a)	(b) ¹	(c)	(d) [¬]	
5. If [] then the val	ue of $\frac{\overrightarrow{()}}{()}$, $\frac{\overrightarrow{()}}{()}$, $\frac{\overrightarrow{()}}{()}$, $\frac{\overrightarrow{()}}{()}$, $\frac{\overrightarrow{()}}{()}$	()		
(a) 1	(b) -1	(c) 2	(d) 3	
6. The volume of the parallele	epiped with its edges represente	d by the vectors ^ ^ ^ ^ ^ ^ ^	^ îs	
(a) –	(b) –	(c) π	(d) –	
7. If and are unit vectors such	that $* \stackrel{\rightarrow}{\rightarrow} + -$, the	n the angle between and \vec{is}		
(a) –	(b) –	(c) –	(d) –	
8. If $$ and $$, $$ and $()$	$\stackrel{*}{\rightarrow}$ then the value of	is	
(a) 0	(b) 1	(c) 6	(d) 3	
9. If $$ are non-coplanar,	non-zero vectors such that [] then $\{[$]} is equal to	
(a) 81	(b) 9	(c) 27	(d)18	
10. If $$ are three non-co	planar vectors such that () $\frac{1}{\sqrt{2}}$ then the angle bet	ween and is	
(a) –	(b) —	(c) –	(d) π	
11. If the volume of the parallelepiped with \vec{r} as coterminous edges is 8 cubic units, then the volume of the				
parallelepiped with $()$	([^])([^])() an	d () () as coterminous ec	lges is,	
(a) 8 cubic units	(b) 512 cubic units	(c) 64 cubic units	(d) 24 cubic units	
12. Consider the vectors $\vec{}$	such that () () $$. Let and be the	planes determined by the pairs of	
vectors and respectiv	vely. Then the angle between	and is		
(a) 0°	(b) 45°	(c) 60°	(d) 90°	

https://www.qb365.in/materials/

13. If () () where $$ are any three	e vectors such that $$ and	nd $$ then \square and are
(a) perpendicular	(b) parallel	(c) inclined at an angle –	(d) inclined at an angle –
14. If $$, $$, $$ and is	^ ^ ^ and ^ ^ ^ t	hen a vector perpendicular to	and lies in the plane containing $$
(a) ^ ^ ^	(b) ^ ^ ^	(c) ^ ^ ^	(d) ^ ^ ^
15. The angle between the li	nes — and —	— — is	
(a) –	(b) –	(c) –	(d) –
16. If the line — —	— lies in the plane	then () is	
(a) (-5,5)	(b) (-6, 7)	(c) (5, -5)	(d) (6, -7)
17. The angle between the line	ne (^ ^ ^) (^) and the plane ($$)) is
(a) 0°	(b) 30°	(c) 45°	(d) 90°
18. The coordinates of the po	pint where the line (^^^	^) (^ ^) meets the plan	ne (^ ^) are
(a) (2, 1, 0)	(b) (7, -1, -7)	(c) (1, 2, -6)	(d) (5, -1, 1)
19. Distance from the origin	to the plane	is	
(a) 0	(b) 1	(c) 2	(d) 3
20. The distance between the	e planes a	and is	
(a) $\frac{\sqrt{-1}}{\sqrt{2}}$	(b) –	(c) <u>√</u>	(d) $\overline{\sqrt{}}$
21. If the direction cosines of	f a line are – – – then		
(a)	(b) $\sqrt{-}$	(c) $c > 0$	(d) 0 < c < 1
22. The vector equation	(^ ^) (^) represen	nts a straight line passing through	h the points
(a) (0, 6, -1) and (1, -2, -1)	(b) (0, 6, -1) and (1, -4, -2)	(c) (1, -2, -1) and (1, 4, -2)	(d) (1, -2, -1) and (0, -6, 1)
23. If the distance of the povalues of k are	oint (1, 1, 1) from the origin i	s half of its distance from the	plane , then the
(a)	(b)	(c) -3, 9	(d) 3, -9
24. If the planes (^ ^	^) and (^ ^)	are parallel, then the value of	of λ and μ are
(a) -	(b) –	(c) –	(d) –
25. If the length of the perpe	ndicular from the origin to the p	blane	is , then the value of λ is
(a) $$	(b) v	(c) 0	(d) 1