https://www.qb365.in/materials/

PUTH AL

https://www.qb365.in/materials/

அணைவுக் கோளம் : மைய உலோக அணு (அ) அயனி குறிப்பிட்ட எண்ணிக்கையிலான வழங்கி அயனி (அ) மூலக்கூறுகளுடன் ஈதல் பிணைப்பால் பிணைக்கப்பட்டிருக்கும்.

எ.கா. மூலக்கூறுகளுடன் ஈதல் பிணைப்பால் பிணைக்கப்பட்டிருக்கும். [COCl₃(NH₃)₃]

மைய உலோக அணு / அயனி : வழங்கீ அணு (அ) அயனிகள் வழங்கும் எலக்ட்ரான் இணையை ஏற்கும் உலோக அணு / அயனி – லூயிஸ் அமிலம்

எ.கா. $\mathrm{K}_2[\mathrm{PtCl}_{c}],\mathrm{Pt}^{4_+}$ - பைய உலோக அயனி

ஈனிகள் : மைய உலோக அணு / அயனிக்கு எலக்டூரான் இணையை வழங்கி ஈதல் பிணைப்பை ஏற்படுத்தும் அயனி / மூலக்கூறு ஈனி எனப்படும்.

எ.கா. $[Ni(NH_3)_6]$ Cl_2 , NH_3 ஈனி – லூயிஸ் காரம்.

அணைவு எண்: மைய உலோக அணு / அயனியுடன் ஈனிகள் ஏற்படுத்திய பிணைப்பின் எண்ணிக்கை.

எ.கா.	அ. எண்.
$[Ag(CN)_{2}]$	2
$[Cu(NH_3)_4]^{2+}$	4
$[Cr(H_2O)_6]^{3+}$	6

அணைவு பன்முகம் : (Co - ordination polyhedron)

மைய உலோக அணு / அயனியுடன் இணைந்துள்ள ஈனிகள் புறவெளியில் அமைந்துள்ள முறைக்கு அணைவு பன்முகம் எனப்படும்.

ஆக்ஸிஜனேற்ற எண் : மைய உலோக அணு / அயனியில் இருந்து அனைத்து ஈனிகளும் இணை எலக்ட்ரான்களுடன் வெளியேற்றப்பட்டபின் எஞ்சியுள்ள மின்சுமை ஆக்ஸிஜனேற்ற எண் எனப்படும்.

எ.கா.	ஆ.எண்.	
$[Ce(NH_3)_6]^{3+}$	+3	Co (III)
$[Fe(CN)_{6}]^{4-}$	+2	Fe(II)
[Ni (CO) ₄]	0	Ni (0)

சீரான (ம) சீரற்ற அணைவுகள் <u>(homoleptic & heteroleptic complexes)</u>

ஒரே மாதீரியான ஈனிகள் கொண்ட அணைவுகள் (homoleptic) சீரான அணைவு எ.கா. $[{
m CO}({
m NH}_3)_2]^{3_+}$

ஒன்றுக்கு மேற்பட்ட ஈனிகள் கொண்ட அணைவுகள் (heteroleptic) சீரற்ற அணைவு எ.கா. $[\mathrm{CO}(\mathrm{NH}_{3})_{4} \ \mathrm{C}l_{2}]^{+}$

https://www.qb365.in/materials/

திவரை கற்றது : (Re cap)

எ.கா. $\mathrm{CuSO}_{_4}$ கரைசலில் அதிகப்படியான KCN சோத்தால்

- 1. உருவாரும் அணைவு அயனி எது?
- 2. இத்துடன் $H_2S_{(g)}$ செலுத்தும் போது காப்பர் சல்பைடு வீழ்படிவு ஏன் உருவாவதில்லை? <u>விடை:</u> $CuSO_4 + 4KCN \rightarrow K_2 [Cu(CN)_4] K_2SO_4$
- i. உருவான அணைவு அயனி = $[Cu(CN)_4]^{2-}$
- ii. அணைவு அயனி நிலைப்புத்தன்மை கொண்டது Cu^{2+} (and) CN அயனிகள் உருவாகாது. எனவே H_2S உடன் வீழ்படிவு உருவாகிறது.

முயற்சி செய் :

- 1. [CO(NH₃)₄ (H₂O) Br] (NO₃)₂ හ් CO-თ් එඟෙනාකු எණා......
- 2. K₃ [Fe (C₂O₄)₃] ல் Fe' ன் ஆக்ஸிஜனேற்ற எண்

ஒற்றைக்கரு அணைவுகளுக்குப் பெயரிடுதல்.

Nomeneclature of Mononuclear complexes : விதிகள்

- அயனி அணைவுகளில், நேர்மின் அயனி முதலிலும், எதீர்மின் அயனி பின்னரும் பெயரிடப்பட வேண்டும்.
- அயனியல்லாத (அ) மூலக்கூறு அணைவுகளுக்கு ஒரு சொல் பெயர் தரப்பட வேண்டும்.
- எனி பெயர் (ide) 'ஐடு' ஆக முழந்தால் 'ஒ' என்று மாற்றவும் (குளோரைடு குளோரோ) ஏட்டு (அ) ஐட்டு என்று இருப்பின் 'டோ' என மாற்றவும். (சயனேட் – சயனேட்டோ)
- நீர் அக்குவா, அம்மோனியா அம்மைன் <mark>தவிர பிற நடுநிலை மூலக்கூ</mark>றுகளை பெயர் மாற்றத்தேவையில்லை.
- 5. நோ்மின் அயனிகள் 'இயம்' (ium) என முடியும் எ.கா. ஹைப்ரசீனியம் NH, NH, -
- நேர்மின் அணைவு அயனியில், மைய அணு அதன் வழக்கமான பெயரிலேயே குறிப்பிடப்படும்.
- 7. எதிர்மின் அணைவு அயனியின், மைய அணு / அயனியின் பெயர் (ate) ஏட் என்று முடிகிறது.
- கைமய அயனியின் ஆக்ஸிஜனேற்ற எண், அவ்வயனியின் பெயருடன் தொடர்ந்து ரோமன் எண்ணிக்கையால் அடைப்புக்குள் குறிப்பிடப்படுகிறது.
- எனிகளின் பெயர்களிலேயே டை, ட்ரை, இருப்பின் அவற்றின் மொழிகளால் குறிப்பிடப்படுகின்றன.
- 10. அணைவில் ஒன்றுக்கு மேற்பட்டானி இருப்பின், ஆங்கீல அகர வரிசையில் பெயரிடப்படும்.

ஈனிகளின் வகைகள் :

<u>1. ஈனிகளின் மின்சுமையைப் பொறுத்து :</u>

i. எதீர்ஈனி : எதீர்மின் சுமை கொண்டது.

எ.கா. C^{1_}, CN^{_}, S^{2_}, SO^{2_}4

```
பெயர் மாற்றம் 🛛 🕿 டு (ide)- ஒ
```

```
ஜட் (ite) - ஐட்டோ (ido)
```

```
ஏட் (ate) - ஏட்டோ (ito)
```

நைடீரேட் – நைடீரேட்டோ $C_2 O_4^{2-}$ ஆக்ஸலேட்டோ

 $H\!S^{--}$ பெர்காப்டோ $acac^-$ அசிட்டைல் அசிட்டனேட்டோ, N_3^- அசிடோ

NH[–] இமிடோ, *N*³ நைட்ரிடோ

∈ ஹைட்ரிடோ, *OH*[−] ஹைட்ராக்சைடோ

https://www.qb365.in/materials/

- **நடுநீலை ஈனிகள் :** மின் சுமையற்றவை. எலக்டீரான் இணையை வழங்குபவை.
 H₂O- அக்குவா, NH₂ அம்மைன், பை பிரிடைல், C₂H₂N பிரிடின்
- $i\!i\!i$. **நேர் ஈனிகள் :** நேர்மின் சுமை கொண்ட ஈனிகள் $\mathrm{H_3O^+}$ ஹைட்ரோனியம் அயனி, NO_2^+

நைட்ரோனியம் அயனி, $NH_2 - NH_3^+$ - ஹைட்ரசீனியம் அயனி NO^* நைட்ரசோனியம் அயனி.

2. ஈனிகள் ஏற்படுத்தும் ஈதல் பிணைப்பினைப் பொறுத்து : (Denticity)

(வழங்கும் e இணையைப் பொறுத்து)

- i. ஒரு முனை ஈனி: ஒரு எலக்∟்ரான் இணை வழங்கீ ஒரே ஒரு ஈதர் சகபிணைப்பை ஏற்படுத்தும் எ.கா. Cl⁻, H₂O, NH₃, NH₃⁺
- ii. **இருமுனை ஈனி :** ஈனிகள், இரண்டு இணை எலக்ட்ரான்களை வழங்கி இரு ஈதல் சகபிணைப்பை ஒரே நேரத்தில் ஏற்படுத்தும்.

iii. பலமுனை ஈனிகள்.

மும்முனை ஈனி : ஈனிகள் மூன்று இணை எ<mark>லக்ட்ரான்களை வழ</mark>ங்கீ மூன்று ஈதல் சகபிணைப்புகளை ஒரே நேரத்தில் ஏற்படுத்தும்.

anc

iv. நான்கு முனை ஈனி : எ.கா. டரை எத்திலீன் டெடர்மீன் (trien)

(disi)

v. இந்துமுனை ஈனி: எத்திலீன் டை அமீன் ட்ரை அசிட்டேடோ

DB365

https://www.qb365.in/materials/

vi. **அறுமுனை ஈனி :** ஒரு ஈனியில் ஆறு வழங்கு அணுக்கள் கொண்டது. எ.கா.

vii. ஈரணு பெற்ற ஒருமுனை ஈனி: (ambidentate ligands)

ஒரு ஈனி ஒன்றுக்கும் மேற்பட்ட வழங்கு அணுக்களை பெற்றுள்ளதால் மைய உலோக அணுவுடன் ஒன்றுக்கும் மேற்பட்ட ஈதல் சகபிணைப்புகளை ஏற்படுத்தும். ஒன்றுக்கு மேற்பட்ட முறைகளில் மைய உலோக அயனியுடன் சேரும் தன்மை கொண்டவை

viii. வளைந்து கொடுக்கும் தன்மை கொண்ட ஈனிகள் : (Flexidentate)

மைய உலோக அயனியின் தன்மையைப் பொருத்து ஈனிகள் மாறுபட்ட பிணைப்பினை ஏற்படுத்துபவை

எ.க. EDTA

ிணைப்பு	எண்ணிக்கை
H_{4} (EDTA)	2
H ₃ (EDTA)	3
H, (EDTA)	4
H (EDTA)	5
(EDTA)	6

கொடுக்கீணைப்பு ஈனிகள் : பல முனை ஈனிக<mark>ள் மைய அணுவு</mark>டன் ஒன்றுக்கு மேற்பட்ட பிணைப்பினை ஏற்படுத்தி வளைய சோ்மத்தை ஏற்படுத்துபவை

- З. தனி ஈ னி எலக்ட்ரான் இணை வழங்கும் தீறன் அடிப்படையில் :
- i. 🛛 – **வழங்கீகள் : உ**லோக அணு / அயனி<mark>யுடன் எலக்ட்ரான் இணையை</mark> வழங்கி 🗸 பிணைப்பை ஏற்படுத்துபவை. ыт. H₂O, NH₂ etc
- ii. 🗸 – வழங்கீ, π – ஏற்பி : பைய உலோக அணுவிற்கு 🗧 இணையை ஈனிகள் வழங்கி, உலோக அணுவிலிருந்து கணிசமான அளவு எலக்ட்ரான் அடர்<mark>த்தியை ஈனிக</mark>ளின் வெற்று $\in π$ (அ) $π^*$ ஆற்றல் மட்டத்திற்கு ஏற்பவை. எ.கா. CO, NO. (ர அமில ஈனிகள்)
- π வழங்கீ π ஏற்பி : ஈனிகள் π எலக்ட்ரான்களை வழங்கி, π எலக்ட்ரான்களை ஏற்று மைய அயனியுடன் π iii. பிணைப்பை உருவாக்கும். GT.БЛТ. $CH \equiv CH$, C_2H_4 , C_6H_6 etc ALONE TRUM

அணைவின் வகைகள் :

அணைவுக் கோளத்தீன் மின்சுமையைப் பொறுத்து.

- நோ்மின் அணைவு : நீகர நோ்மின் சுமை கொண்டது. 1. бт. жп. : $\left[Cu(NH)_3 \right)_4 \right]^{2+}$, $\left[Ag(NH_3)_2 C \right]$, $\left[Cr(H_2O)_4 Cl \right]$
- 2. எதிர்மின் அணைவு : நீகர எதிர்மின் சுமை கொண்டவை. ы. $K_4[Fe(CN)_6], K_3[C_0(CN)_5NO], Na_3[C_0(NO_2)_6]$
- நடுநிலை அணைவு : மின்சுவை அற்றவை. з. ыл.:[*Cr*(*CO*)₆], [*Pt*(*NH*₃)₂*Cl*₂], [*C*₀(*NH*₃)₃*Cl*₃]

https://www.qb365.in/materials/

4. ரோமின் (ம) எதிர்மின் அபனி அணைவு: நோமின் (ம) எதிர்மின் அபனிகள் இரண்டுமே அணைவு அபனிகளாகவே உள்ளவை.

 $[Cr(NH_3)_6]$ $[C_o(CN)_6]$, $[Pt(NH_3)_4]$, $[CuCl_4]$

முயற்சி செய் :

- 1. பின்வருவனவற்றுள் கொடுக்கிணைப்பு ஈனி எது? $H_2OC_2O_4^{2^-}, EDTA^{4^-}, CO_3^{2^-}, SCN^-, CO, C_2H_4.$ பதில் : $C_2O_4^{2^-}, EDTA^{4^-}, CO_3^{2^-}$
- ஈரணு கொண்ட ஒருமுனை எனி ஒரு இருமுனை எனியா? இல்லை ஒரு நேரத்தில் ஒரு பிணைப்பை மட்டும் ஏற்படுத்தும்.

இரு உட்கரு பால அமைப்பு ஈனி கொண்ட அணைவுகள் :

(Bridging binuclear complexes)

இரு மைய உலோக அணுவிற்கு பாலமாய் அமையும் ஈனிகளை பெயரிட, கீரேக்க எழுத்து $\mu_{-}(mu)$ என்ற முன்னொட்டு பயன்படும்.

எ.கா.

$$\begin{pmatrix} OH \\ (NH_3)_4 Co & Go (NH_3)_2 Cl_2 \\ Cl & \end{pmatrix} (NO_3)_4$$

இதில் ஈனிகள் \overline{NH}_2 (இமிடோ) \overline{NO}_2 (நைட்ரோ<mark>), NH_3 (அம்மை</mark>ன்)

மைய **உலோக** அணுவின் மின்சுமை : <mark>+3</mark>

$$4(0) + x + (-1) + x + 4(0) - 1 + 4(-1) = 0$$

2x = 6 or x = 3

பெயர் : டெட்டரா அமீன் கோபால்ட் (III) – <mark>µ – அமிடோ நைட்ரோ – µ –</mark> டெட்ரா அம்மைன் கோபால்ட் (III) நைட்ரேட்

61.6511.

புறவெளி மாற்றியம்

வடிவ மாற்றியம் (ஒருபக்க – மறுபக்க மாற்றியம்) ஒ<mark>ளியியல் மா</mark>ற்றியம்

டெட்ரா அக்வா அயர்ன் $(III) - \mu - டை ஹைட்ராக்ஸோ டெட்ரா அக்வா அயர்ன் <math>(III)$ சல்பேட்

 $[(NH_3)_5Cr - OH - Cr(NH_3)_5]Cl_5$

பென்டா அம்மைன் குரோமியம் (III) – μ – ஹைராக்சைடோ பென்டா அம்மைன் குரோமியம் (III) குளோரைடு.

அணைவு அயனியின் நிலைப்புத்தன்மை :

கொடுக்கீணைப்பு ஈனிகள் கொண்ட அணைவில் வளையங்களின் அணுக்களின் எண்ணிக்கையைப் பொறுத்து நிலைப்புத்தன்மை மாறுபடும்.

நான்கணு வளையம் < ஐந்தணு வளையம் < ஆறணு வளையம்

அணைவு அயனியின் நீலைப்புத்தன்மையை பாதீக்கும் காரணிகள் :

1. அணைவு அயனியின் நிலைப்புத்தன்மை ∞ மைய உலோக அயனியின் மின்சுமை எ.கா. $Fe^{3+}>Fe^{2+}$; $CO^{3+}>CO^{2+}$

https://www.qb365.in/materials/

2. அணைவு அயனியின் நிலைப்புத்தன்மை $^{\infty}$ ________ மைய உலோக அயனியின் உருவளவு

бт. Б.Г. $Mn^{2+} < Fe^{2+} < CO^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$

- 3. அணைவு அயனியின் நிலைப்புத்தன்மை ∞ கொடுக்கிணைப்புத் தன்மை
- 4. அணைவு அயனியின் நிலைப்புத்தன்மை ∞ ானிகளின் காரத்தன்மை $NH_{3}>H_{2}O>HF$
- 5. அணைவு அயனியின் நிலைப்புத்தன்மை ∞ ஈனிகளின் எதிர்மின் சுமை $F^->Cl^->Br^->l^-$
- 6. அணைவு அயனியின் நிலைப்புத்தன்மை 🗠 🕂 👘 👘 സംഭവതവ
- 7. அணைவு அயனியின் நிலைப்புத்தன்மை ∞ ானியின் நிலையான இருமுனை திருப்புத்திறன்.
- அணைவின் நிலைப்புத்தன்மை மைய உலோக அணுவில் உள்ள காலியான (n 1)d ஆர்பிட்டால்களைப் பொறுத்து மாறுபடும்.
- நடுநிலை ஈனிகள் கொண்ட அணைவின் நிலைப்புத் தன்மை வரிசை : NH₂ > en > டை எத்தில் அமீன் < டீரை எத்தில் அமீன்.
- 10. அணைவு அயனியின் நிலைப்புத்தன்மை $\propto\pi$ பிணைப்புகளைத் தரவல்ல ஈனிகளில் அதிகம் : $(C\!N^-\,;CO)$
- 11. அணைவின் நிலைப்புத்தன்மை ^{*α*} கொள்ளிடத் தடை

முயற்சி செய் :

- பின்வரும் அணைவுச் சோமங்களின் பெயர் எழுது?
 - a) $[Co(NH)_3)_5(CO_3)]$ Cl பென்டாஅம்மைன் கார்பனேட்டோ கோபால்ட் (III) குளோரைடு.

1

- b) [Pt(NH₃)₂Cl(NO₂)] டை அம்மைன் குளோரோ நைட்ரிட்டோ N பிளாட்டினம் (II)
- 2. வாய்ப்பாடு எழுது.
 - a) ஹெக்ஸா கார்பனைல் குரோமியம் (0) [Cr (CO)₆]
 - b) ட்ரிஸ் (ஈத்தேன் 1, 2 டை அமீன்) <mark>கோபால்ட் (III) சல்பேட் [Cr (en)</mark>₃]₂ (SO₄)₃

அணைவுச் சோ்மங்களில் மாற்றியம் :

ஒரே மூலக்கூறு வாய்ப்பாடு வேறுபட்ட அணுக்களின் அமைப்பு கொண்டதால். இயற்பியல் பண்புகளில் மாறுபடும் சோமங்கள் மாற்றியங்கள் எனப்படும்.

வகைகள் : அமைப்பு மாற்றியம் (ம) புறவெளி மாற்றிம் :

<u>அமைப்பு மாற்றியம் :</u> ஒரே மூலக்கூறு வாய்பாடு மாறுபட்ட அமைப்பு கொண்ட சோ்மங்கள்

- <u>அயனியாதல் மாற்றியம் :</u> கரைசலில் வெவ்வேறு அயனிகளை தருபவை எ.கா. [Co(NH₂)₄ Cl NO₂] (ம) [Co (NH₂)₄ Cl₂] NO₂
- நீரேற்ற மாற்றியம்: அணைவில் உள்ள நீர்மூலக்கூறுகள் (ம) கரைப்பான் மூலக்கூறுகளின் எண்ணிக்கையில் மாறுபடும். எ.கா. [Cr(H₂O)₆] Cl - ஊதா நீறம், [Cr (H₂O)₅Cl] Cl₂. H₂O - சாம்பல் பச்சைநீறம்.
- அனைவு மாற்றியம் : இரு உலோக அணைவுக் கோளங்களில் ஈனியின் பங்கீடு மாறுபடுகீறது. எ.கா. [Cr (NH₃)₆] [Co(CN)₆] (ம) [Co(NH₃)₆] [Cr(CN)₆]
- 4. <u>ஈனி மாற்றியம் :</u> ஈனிகள் பல்வேறு மாற்றிய வடிவங்களில் இருப்பதால் ஏற்படும் மாற்றியம் எ.கா. : [Co(pn),Cl,]+ & [Co (tn), Cl,]⁺
 - Pn 1, 2 டை அமினோ புரப்பேன்
 - tn 1, 3 டை அமினோ புரப்பேன்

https://www.qb365.in/materials/

 திணைப்பு மாற்றியம் : பிணைப்புறும் ஈரணு பெற்ற ஒரு முனை ஈனி, ஒன்றுக்கு மேற்பட்ட முறைகளில் பிணைப்பை ஏற்படுத்துவதால் உருவாவது.

я.вп. $[Co(NH_3)_5NO_2] Cl_2 - N$ இணைப்பு $[Co(NH_3)_5 ONO] Cl_2 - O$ இணைப்பு

 பலபடியாக மாற்றியம் : இயைபு விகீதம் சமமாகக் கொண்ட அணைவு சேர்மங்களில் மாற்றுகளின் மூலக்கூறு வாய்ப்பாடுகள் ஒரு எளிய விகீத வாய்ப்பாட்டின் மடங்குகளாக இருத்தல். எ.கா. [Pt(NH₃), Cl₃] and [Pt (NH₃)₄] [PtCl₄]

முயற்சி செய் :

<u>மாற்றியம் வகை எழுது.</u>

a) $\left[Cr(NH_3)_6\right] \left[Cr(CN)_6\right]$ فالمراق فالمراجع في مراجع في مر

b) அயனியாதல் மாற்றிம்

- b) $\left[Pt(NH_3)_4 Br_2 \right] Cl_2$ ь функтик $\left[Pt(NH_3)_4 Cl_2 \right] Br_2$
- с) $[Co(py)_2(H_2O)_2Cl_2]$ ыўды $[Co(py)_2(H_2O)_2Cl_3]H_2O$
- d) $\left[Co(NH_3)_5 NO_2\right] Cl_2$ bjmjub $\left[Co(NH_3)_5 ONO\right] Cl_2$

ഖിതെ :

a) அணைவு மாற்றிம்

c) நீரேற்ற மாற்றியம்

d) இணைப்பு மாற்றியம்

புற<mark>வெளிமாற்றிய</mark>ம்

வடிவமாற்றியம்

(ஒருபக்க – மறுபக்க மாற்றியம்)

ஒளியியல் மாற்றியம்

வடிவ மாற்றியம் :

- * நான்முகி அணைவுகளில் வடிவ மாற்றிம் காணப்படுவதில்லை.
- * சதுரதள அணைவுகளில் [Ma₄], [Ma₃b<mark>], [Mab₃] வகை அணைவு</mark>கள் வடிவ மாற்றியம் காட்டுவதில்லை. (++= அனைத்து இடங்களும், வகைகளும் சமம்)
- * Ma₂b₂, Ma₂bc, Mabcd, M(AB)₂ வ<mark>கை சதுரதள அமைப்புகள் வடிவ மா</mark>ற்றியம் காட்டிகின்றன.

* Mabcd வகை அமைப்புகள் 3 வகையான வடிவ மாற்றியம் ஏற்படுத்தும் (சிறப்பு)

– சீர்மையற்ற இருமுனை ஈனி.

https://www.qb365.in/materials/

. 15 வகையான வடிவ மாற்று இருக்க முடியும் – இ<mark>வற்றில் மூன்று அ</mark>மைப்புகளை மட்டுமே பிரிக்கமுடியும்.

அமைப்பு	எடுத்துக்காட்டு
$-[M(AA)_2Q_2]$	$[Co(en)_2 Cl_2]^+$
$-[M(AA)_2 ab]$	$[Co(en)_2 (NH_3) Cl]$
$- [M(AA) a_2 b_2]$	$[Co(en) (NH_3)_2 Cl_2]$
$-[M(AB)_3]$	$[Cr(gly)_3]$

Note : இதல் [M(A₃B₃)] வகை எண்<mark>முக் அணைவுச் சோ்மங்களில் உள்ள</mark> மூன்றும் ஒரே வகை ஈனிகள் எண்முகியின் <u>ஒரே முக்கோண முகப்பில்</u> அமைந்தால் அது <u>முகப்பு (Facial)</u> மாற்றியம் (அ) <u>fac</u> மாற்றியம்.

மூன்று ஒரே மாதிரியான ஈனிகள் எண்முகியின் ஒரே சமதளத்தில் (equatorial plans) அமைந்தால் (அ) எண்முகியின் நடுகோட்டில் நான்முகியின் மூலைகளில் ஏதேனும் மூன்று இடங்களில் மட்டும் அமைந்தால் - அது meridional on mer மாற்றியம் எனப்படும்.

fac முகப்பு மாற்றியத்தில் மூன்று மாதிரியான ஈனிகள் முக்கோண மூலையிலும் (mer) மாற்றியத்தில் சதுர தளத்தில் மூன்று மூலையிலும் அமையும்.

https://www.qb365.in/materials/

ஒளிமியல் மாற்றியம்

தள முனைவுற்ற ஒளியை வலஞ்சுழற்சியாகவோ இடஞ்சுழற்சியாகவோ தீருப்பும் தன்மை *நீபந்தனை*–

கைரல்தன்மை (ம) சீர்மையற்ற தளம்

தளமுனைவுற்றஒளியை வலப்புறம் தீருப்பினால் வலஞ்சுழற்சி, இடப்புறம் தீருப்பினால் இடஞ்சுழற்சிமாற்றியம் எனப்படும்.

அணைவுச் சோ்மங்கள் பற்றிய கொள்கைகள் :

<u> 1. வெர்னர் கொள்கை :</u>

- மைய உலோக அயனி இரு வகை இணைதிறன்களை கொண்டது.
- முதல் நிலை உலோகத்தீன் ஆக்ஸிஜனேற்ற எண்ணைக் குறிக்கும் (அ) அயனியாகும் அணைதீறன் எதீர்மின் அயனிகளால் ஈடு செய்யப்படுகிறது. – தீசையொப்பு பண்பு இல்லை.
- . இரண்டாம் நிலை (அ) அயனியாகா இணைதிறன் உலோகத்தின் அணைவு எண்ணைக் குறிக்கும். (ஈதல் சக பிணைப்புகளின்எண்ணிக்கை)– எதிர் அபனி(ம) நடுநிலை மூலக்கூறுகளால்ஈடு செய்யப்படுகிறது. – திசைவபாப்பு பண்பு உண்டு. . இக்கொள்கை கடத்துத்திறன் மதிப்புகள் (ம) வீழ்ப்படிவு உருவாதலைக் கொண்டு சரி பார்க்கப்பட்டது.

எ.கா. (1) $\left[Pt(NH_3)_6 \right] Cl_4 \rightarrow \left[Pt(NH_3)_6 \right]^{4+} + 4Cl^{-5}$ அயனிகள்

AgNO3 உடன் AgCl வீழ்படிவு மிகவும் அதிகம் கடத்துத்திறன் மிக அதிகம்.

எ.கா. (2)	$\left[Pt(NH_3)_5\right]Cl_3.NH_3$	4 அயனிகள்
எ.கா. (З)	$\left[Pt(NH_3)_4\right]Cl_2.2NH_3$	3 அயனிகள்
எ.கா. (4)	$[Pt(NH_3)_3]Cl.3NH_3$	2 அயனிகள்
எ.கா. (5)	$\left[Pt(NH_3)_2\right]4NH_3$	அயனிகள் இல்லை
	இதில் AgCl வீழ்ப <mark>டிவு மிகக்குறைவு கட</mark> த	<mark>ந்து</mark> த்திறன் இல்லை

(1) – (4) அணைவுகள் *Cl*[–] க்கான சோதனை தரும்.

குறிப்பு : கடத்துத்திறன் அயனிகளின் எண்<mark>ணிக்கைக்கேற்ப மாறுபடுதல்.</mark>

<u>2. சிட்விக் நீகர அணு கொள்கை :-</u>

(Sidgwick Effective Atomic Number Theory)

- ஈனிகளிலிருந்து உலோகத்திற்கோ உலோக அயனிக்கோ ஒரு ஜோடி எலக்டீரான்கள் வழங்கப்படுவதன் மூலம் அணைவுகள் உருவாகீன்றன.
- உலோகத்தில் உள்ள (அ) உலோக அயனியில் உள்ள எலக்ப்ரான்கள் (ம) ஈனிகள் வழங்கும் எலக்ப்ரான்கள் ஆகிபவற்றின் மொத்த எண்ணிக்கையும் அட்டவணையில் மைய அயனியை அடுத்துவரும் மந்த வாயுவின் அணு என்னும் சுமமாகும் ஆகும் வரை இணை எலக்ப்ரான்களை உலோக அயனி (ானிகளிடமிருந்து) தொடர்ந்து ஏற்றுக் கொள்ளும்.

ALONE TRI

<u>வரையறை :</u>

அணுவில் உள்ள உலோக	உலோகத்தின் அணு எண் – அயனி உருவாகும் போது
அணுவின் நீகர அணு எண் 🛛 =	இழக்கப்பட்ட எலக்ட்ரான்கள் + அணைவு உருவாதலின் போது
(EAN) ஏற்று	க்கொண்ட எலக்ட்ரான்கள்

எடுத்துக்காட்டு :-

i. $K_4[Fe(CN)_6]$ Z = 26

$$Fe^{2+}$$
 இழந்த $e^-=2$

அணைவு உருவாதலின் போது ஏற்றுக்கொண்ட e^- கள் $6\chi 2=\!12$

Fe - ன் *EAN* = 26 - 2 + 12 = 38 - 2 = 36 = *Kr* ன் அணு எண்

https://www.qb365.in/materials/

ii. $Ni(CO)_4$ $Z_{Ni} = 28;$

ஏற்றுக்கொண்ட e^- கள் $4\ X\ 2=8$ $EAN_{_{Ni}}=28+8=36=Kr$ ன் அணு எண்

உலோக	அணு எண்	ക്കഞ്ഞഖു எൽ	இழக்கப்பட்ட	அணைவிற்கு	EAN
அயணி			e⁻கள்	е⁻கள்	போது பெற்ற
					e⁻கள்
Fe^{2+}	26	6	2	12	36(Kr)
Co^{3+}	27	6	3	12	36 (Kr)
Cu^+	29	4	1	8	36 (Kr)
\mathbf{Pd}^{4+}	46	6	4	12	54 (Xe)
Ir^{3+}	77	6	3	12	86 (Rn)
Pt^{4+}	78	6	4	12	86 (Rn)

<u>கறிப்பு :</u>

EAN கொள்கையை பின்பற்றாத சில உலோக அயனிகளும் உள்ளன.

எ.கா. $[Fe(CN)_6]_1^{3-2}$ இதல் Feன் EAN = 26 - 3 + 12 = 35 (மந்த வாயு அணு எண் அல்ல) வினா : மைய உலோக அணு | அயனியின் EAN கணக்கீடு.

 $i.K_{4}[Fe(CN)_{6}]$ $ii.[Co(en)_{2}(NH_{3})_{2}]^{3+}$

ഖിഞ്ഥ :

i.EAN of $Fe^{2+} = 26 - 2 + (2x6) = 36$ *i.EAN of* $Co^{3+} = 27 - 3 + (2x6) = 36$

3. இணைத்தீறன் பிணைப்புக் கொள்கை :- <u>(VALENCE BOND THEORY) :</u>

- மைய உலோக அணு (அ) அயனி ானிகள் வழங்கும் ச களை ஏற்கும் வகையில் (n 1)d, ns, np ஆர்பிட்டால் இனக்கலப்பு செய்கிறது. இது d Sp²- சதுர தளம், Sp³- நான்முகி, Sp³d²- எண்முகி அமைப்புகளை கொடுக்கிறது.
- மைய உலோக அணுவின் இனக்கலப்பு ஆர்பிட்டால்களும் எனிகளின் வெற்று ஆர்பிட்டால்களும் மேற்பொருந்தி ஈதல் பிணைப்பை உருவாக்குகின்றது.
- இனக்கலப்பில் (n 1)d ஆர்பிட்டால்கள் கொண்டு உருவாகும் அணைவு d²S p³ தாழ் சுழற்சி அணைவு (Low spin complex) (அ) உள் ஆர்பிட்டால் அணைவு (Inner Orbital complex) எனப்படும்.
- வெளி np (ம) nd ஆர்பிட்டால்கள் கொண்டு உருவாகும் sp³d² அணைவு உயர் சுழற்சி (High Spin Complex) (அ) வெளி ஆர்பிட்டால் அணைவு (Outer Orbital Complex) எனப்படும்.

https://www.qb365.in/materials/

<u>குறிப்பு :</u>

உள் ஆர்பிட்டால் அணைவுகளில் குறைவான எண்ணிக்கையில் தனித்த எலக்ட்ரான்கள் இருக்கும் வெளி ஆர்ப்பிட்டால் அணைவுகளில் அதிக எண்ணிக்கையில் தனித்த எலக்ட்ரான்கள் இருக்கும்.

அணைவுச் சேர்மங்களின் காந்தப்பண்பு :-

டையா காந்தத் தன்மை – எலக்ட்ரான் இணையைக் கொண்டவை காந்தப்பண்பு காட்டுவதில்லை –

BM

காந்தத் திருப்புத்திறன் = O

பாரா காந்தத்தன்மை – ஒன்று (அ) அதற்கு மேற்பட்ட தனித்த எலக்ட்ரான்களை கொண்டவை – காந்தப்பண்பு உண்டு. காந்தத் திருப்புத்திறன் அதிகம்.

$\mu = \sqrt{n(n+2)}$			
n	μ		
0	0		
1	1.73		
2	2.83		
3	3.87		
4	4.90		
5.	5.92		

https://www.qb365.in/materials/

<u>VB</u> கொள்கையின் பயன்கள்

எண்முக் அணைவுகள் : 1.

உயர்சுழற்சி அணைவு (அ) வெளி ஆர்பிட்டால் அணைவு உருவாகிறது பாரா காந்தத் தன்மை

$$\mu = \sqrt{n(n+2)BM} \qquad \mu = \sqrt{4(4+2)} = 4.90BM$$

$$\boxed{Co(x+3)_6}^{3+} \qquad 3d \qquad 4s \qquad 4r$$

$$\boxed{Co(x=2r)} \quad 3d^7 + s^2 \qquad \boxed{n(1+1)/n} \qquad \boxed{1}$$

$$\boxed{Co^3+2rwm} \qquad 3d^5 + s^2 \qquad \boxed{n(1+1)/n} \qquad \boxed{1}$$

இவ்விடத்தில் NH_3 வலிமையான ஈனியாக மற்றும் [Co-ன் $_{+3}$ ஆக்ஸிஜனேற்ற நிலையினால் தனித்த $_{e^-}$ களை இணை செய்கிறது.]

டையா காந்தத் தன்மை உள் ஆர்பிட்டால் <mark>அணைவு (அ) தாழ் சுழற்சி</mark> அணைவு நான்முகி அமைப்பு : SP³ இனக்கலப்பு

சதுர அணை	നഖ: d	¹ sp ² இனக்கலப்பு ALONE TRIO
		7C72
СО	-	ഖരിയെന്നത് 🖂 🖉 👘
Ni(0)	-	ஆக்ஸிஜனேற்ற நீலை : $n=0$ $\mu_s=0$
[Ni(CO)]) ₄] -	டையா கா <mark>ந்தத் தன்ம</mark> ை
$[NiCl_4]^2$		பாரா காந்தத்தன்மை : $n=2$ $\mu_s=2.83BMM$

தளசதுர அணைவு : d¹sp² இனக்கலப்பு

$$[Ni(CO)_{4}]^{2-}$$
 -

ഖരിയഥന്വലാഷം

அணைவு	எலக்டரான் அமைப்பு (ம)	ഖழவம்	இணையாகாத	காந்தப்பண்பு
அயனி	னைக்கலப்பு		e- எண்ணிக்கை	
$[\operatorname{MnCl}_6]^{4-}$	$3d^5$, d^2Sp^3	எண்முகி	1	பாராகாந்தத்தன்மை
$[Fe(H_2O)_6]^{3-}$	3d ⁵ ,d ² Sp ³	எண்முகி	1	பாராகாந்தத்தன்மை
$[CuCl_{4}]^{2-}$	$3d^9$, Sp^3	நான்முகி	1	பாராகாந்தத்தன்மை
$[Zn(NH_3)_4]^{2+}$	$3d^{10}$, Sp^3	நான்முகி	0	டையாகாந்தத்தன்மை
[pt(CN) ₄] ²⁻	$5d^8$, dSp^2	சதுரதளம்	0	டையாகாந்தத்தன்மை

டையா காந்தத்தன்மை

https://www.qb365.in/materials/

VB கொள்கையின் குறைபாடுகள் :

- 1. அணைவின் நிலைப்புத் தன்மை பற்றி விளக்குவதில்லை.
- 2. அணைவின் உறிஞ்சு நிறநீரல்கள் பற்றி விளக்குவதில்லை.
- e—கள் ஹீண்ட் விதிக்கு எதிராக ஒழுங்கமைக்கப்படுவதை விளக்குவதில்லை.
- 4. குறைபுல ஈனி நீறைபுல ஈனிகளை வேறுபடுத்தி விளக்குவதில்லை.

படிகப்புல கொள்கை (Crystal Field Theory)

முக்கீய கருதுகோள்கள் :

<u>படிகப்புலக் கொள்கையின் கருதுகோள்கள் :</u>

- * ைமைய உலோக அணுவிற்கும் ஈனிக்கும் இடையே உள்ள ஈர்ப்பு விசை ஒருநிலை மின் விசையே.
- * மைய உலோக அணு / அயனி ஈனிகளால் சூழப்பட்டுள்ளது.
- * ஈனிகள் புள்ளி விசையின் காரணமாக மின்புலத்தை உண்டாக்குகிறது. எதிர் ஈனிகள் எதிர்மின் புள்ளி மின்சுமையாகவும், நடுநீலை ஈனிக்கள் இருமுனைபுள்ளிகள் எனவும் கொள்ளப்படும்.
- * 🔹 இது மைய உலோக அணு / அயனியின் ஆற்றல் மட்டங்களை பிளவுறச் செய்கீறது.
- * மைய உலோக அணு / அயனியின் e ் கள் ஈனிகளின் e ்களால் விலகல் அடைகீன்றன. எனவே ஈனிகளின் d ஆர்பிட்டால் e ்கள் வெவ்வேறு தீசை நோக்கி அமைகின்றன.
- * மைய உலோக ஆர்பிட்டாலுக்கும் எனிகளின் ஆர்பிட்டாலுக்கும் எந்த இடைப்பாடும் இருப்பதில்லை.
- * தனித்த நிலையில் உலோக அணு / அயனியின் <mark>அனைத்து 🛛 ஆர்பி</mark>ட்டால்களுக்கும் ஒரே ஆற்றல் இருக்கும்.
- * ஈனிகளின் e⁻ களின் எதிர்ப்பு விசையின் காரணமாக மைய உலோக அணு / அயனின் ஆர்பிட்டால்கள் சும ஆற்றலை இழந்து பிளப்படைந்து t₂g, eg. ஆகீய இரு தொகுதிகளாக பிரிகின்றது. இரண்டு வகை d – ஆர்பிட்டால்களின் ஆற்றல் வேறுபாடே படிக புலப்பிளப்பு (CRYSTAL FIELD SPLITTING) எனப்படும்.

வலிமை குறைந்த ஈனிகள் : d ஆர்பிட்டால்<mark>களில் குறைவான பிளவினை</mark> ஏற்படுத்தும் ஈனிகள் வலிமை குறைந்த ஈனிகள் எனப்படும். எ.கா. I^-, Cl^-, Br^- இவற்றி<mark>ன் பிளவு ஆற்றல் மதிப்பு (Δ_a)</mark> குறைவாக இருக்கும்.

வனிமை மிகுந்த ஈனிகள் : அதிகமாக பிளவினை ஏற்படுத்தும் ஈனிகள் வலிமை மிகுந்த ஈனிகள் எனப்படும் இவற்றின் (Δ_{o}) அதிகம் எ.கா. CN^{-}, NO_{2}^{--} (ம) CO

நீறமாலை வேதித் தொடர் வரிசை :

பிளவுபடுத்தும் வீரியத்தின் அடிப்படையில் ஈனிகளின் வரிசை

 $I^{-} < Br^{-} < S^{2} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < EtOH < < C_{2}O_{4}^{-2} < H_{2}O < EDTA < NH_{3} < py < en < dipy < NO_{2}^{-} < CN^{-}, < CO$

<u>வலிமை மிகுந்த புல அணைவு :</u> (Strong field complex)

மைய அணுவுடன் வலிமை மிகுந்த ஈனி இணைந்திருந்தால் அது வலிமை மிகுந்த புல அணைவு (அ) உயர்புல (high field) அணைவு எனப்படும் இதில் ($\Delta_{
m o}$) < P

ഖരിതഥ ക്രത്വന്ന്ചെ പ്പാ ക്രഞ്ഞപ്പ : (Weak field complex)

மைய அணுவுடன் வலிமை குறைந்த ஈனிகள் இணைந்திருந்தால் அந்த அணைவு வலிமை குறைந்த புல அணைவு (அ) தாழ்புல (\log field) அணைவு எனப்படும் (Δ_o) < P

இதில் $\Delta_{O}=t_{2s}$ (ம) eg ஆர்பிட்டால்களுக்கு இடையே உள்ள ஆற்றல் வேறுபாடு.

P = சராசரி ஜோடி சேரும் ஆற்றல். (ஒரே ஆர்பிட்டாலில் இரு e— கள் இணையத் தேவையான ஆற்றல்)

з.

https://www.qb365.in/materials/

1. எண்முக் அணைகளில் படிகப்புலப் பிளப்பு : Crystal fieldsplitting in octahedral complexes.

2. சதுரதள அணைவுகளில் படிகப்புலப் பிளப்பு : Crystal Field Spliting in Square Planar Complexes :

 $\Delta o(CFSE) = \left[C - 4Xne^{-}(t_2g)\right] + (+6Xne^{-}(eg)Dq$

 $ne^-(eg) > ne^-(t_2g) \Rightarrow eg$ ஆர்பிட்டால் $> t_{2g}$ ஆர்பிட்டால்களில் உள்ள e^- களின் எண்ணிக்கை.

https://www.qb365.in/materials/

எண்முகீ வடிவத்தீல் படிகபுலப் பிளப்பு :-

ானி எண்முகீயை x, y, z தீசைகளில். நெருங்கும்போது, dx² – y² ஆர்பிட்டால் x (ம) y அச்சின் மீதே அமைந்துள்ளது. எனவே dx² – y² ஆர்பிட்டாலின் ஆற்றல் அதீகரிக்கீறது. dz² ஆர்பிட்டால் ஈனிகளோடு z அச்சில் நேரடியாக அமைந்துள்ளதால். அதன் ஆற்றலும் அதீகரிக்கீறது.

நான்முக் வடிவத்தீல் படிகபுல பிளப்பு :

- * ஈனிகள் மைய உலோக அயனியின் t_{2g} வகை ஆர்பிட்டாலை நோக்கி அமைவதால் t_{2g} ஆர்பிட்டாலின் ஆற்றல் அதிகரிக்கிறது.
- எ.கா. வலிமையான ஈனியின் குறுக்கீட்டினால் $\Delta_{O}>P$. எனவே தனித்த e^- களின் எண்ணிக்கை குறைகின்றது.

எ.கா.

உயர் சுழற்சி

<mark>– தாழ்</mark> சுழற்சி டையாகாந்தத்தன்மை

TRIUMPHS

– பாரா காந்தத் தன்மை CFSE ன் மதிப்பு = –4P + 6Q Dq + mP

இதில் : P - $\mathrm{t}_{_{\gamma_{o}}}$ ல் உள்ள $_{e^{-}}$ களின் எண்ணிக்கை

 $\mathbf{Q} - \mathbf{e}_{\mathtt{g}}$ ல் உள்ள e^- களின் எண்ணிக்கை

M_p - இரு மட்டங்களிலும் உள்ள இணைகளின் எண்ணிக்கை

a. உயர் சுழற்சி (தாழ்புல) எண்முக<mark>ீ அணை</mark>வுகள் :

	_			
அமைப்பு	Р	q	т	CFSE
d^{0}	0	0	0	0Dq
d^1	1	0	0	-4Dq
d^2	2	0	0	-8Dq
d^3	3	0	0	-12Dq
d^4	3	1	0	-6 <i>Dq</i>
d^5	3	2	0	0Dq
d^6	4	2	1	-4Dq + IP
d^7	5	2	2	-8Dq+2P
d^8	6	2	3	-12Dq+3P
d^9	6	3	4	-6Dq+4P
d^{10}	6	4	5	0+5P

https://www.qb365.in/materials/

தாழ் சுழற்சி (உயர்புல) எண்முக் அணைவுகள் :

அமைப்பு	Р	q	т	CFSE
d^{0}	0	0	0	0 <i>Dq</i>
d^{1}	1	0	0	-4Dq
d^2	2	0	0	-8Dq
d^{3}	3	0	0	-12Dq
d^4	4	0	1	-16Dq + p
d^{5}	5	0	2	20Dq + 2p
d^{6}	6	0	3	-24 Dq + 3 p
d^7	6	1	3	-18Dq + 3P
d^{8}	6	2	3	-12Dq+3P
d^{9}	6	3	4	-6Dq + 4P
d^{10}	6	4	5	0Dq + 5P

CFT பயன்கள் :

1. இடைநீலை உலோக அணைகளின் நீறம் பற்றி விளக்குகீறது. [Ti (H₂O)₆]³⁺ ஊதா நீறமுடையது. காரணம் t₂, யிலிருந்து e_க்கு e⁻ மாற்றம் d − d (அ) ஈனிபுல மாற்றம்

(அ) ஈனிப்புல மாற்றம் <i>அனைவு</i> [COCl(NH ₃) ₅] ²⁺ [COCl (NH ₃) ₆] ₂₊ [CO(CN) ₆] ₃₋	உறிஞ்ச ள் மஞ்சள் நீலம் புற ஊது	அனைனவின் நீறம் ஊதா மஞ்சள் ஆரஞ்சு வெளிர் மஞ்சள்									
$d-e^-$ களின் எண்ணிக்கை		0	1	2	3	4	5	6	7	8	9
உயர்சுழற்சி	எண் <mark>முக</mark> ி	0	0.4	0.8	1.2	0.6	0	0.4	0.8	1.2	0
highspin	நான்ம <mark>ுக</mark> ி	0	0.27	0.54	0.36	0.18	0	0.27	0.54	0.36	0
	தளசதுரம்	0	0.51	1.02	1.45	1.22	0	0.51	1.02	1.45	1

தாழ் சுழற்சி	எண்முகீ	0	0.4	0.8	1.2	1.6	2.0	2.4	1.8	1.2	1.6	0
lowspin	நான்முகி	0	0.27	0.54	0.8	1.08	0.90	0.72	0.54	0.36	0.18	0
	தளசதுரம்	0	0.57	1.02	1.45	1.96	2.47	2.90	2.67	2.44	1.22	0

அணைவுச் சோ்மங்களின் பயன்கள் :

- 1. உலோக அயனிகளைக் கண்டறிதல் (ம) எடையறிதலில் பயன்படுகிறது. (EDTA, DMG, lpha நைட்ரசோ eta நாப்தால்)
- 2. நீரின் கடினத்தன்மையை கண்டறியும் தரம்பார்த்தல் Ca^{2+} (and) Mg^2 உடன் Na_2 EDTA பயன்படும்.
- 3. Au, Ag பிரித்தெடுத்தலில்.
- 4. உலோகங்களைத் தூய்மைப்படுத்துதலில்
- 5. உயிர் அமைப்புகளில் (குளோரோபில், ஹீமோகுளோபின்)
- 6. வில்கீன்சன் வினையூக்கீ [(Ph₃P)₃ RhC*l*]- ஆல்கீன்களின் ஹைட்ரஜனேற்றம்.
- 7. புகைப்படத்துறையில்.
- 8. EDTA லைட் நச்சிலிருந்து காக்கும்.
- 9. சிஸ் பிளாட்டின் குறு கட்டிகளை குணப்படுத்தும்.

https://www.qb365.in/materials/

வீனா : படிக புல பிளப்பு வரிசையில் பின்வரும் அணைவுகளை வரிசைப்படுத்தவும்.

 $[Fe(H_2O)_6]^{4-} < [Fe(H_2O)_6]^{2+}, [FeCl_6]^4$ ରୀଭ୍ୟ : $[FeCl_6]^{4-} < [Fe(H_2O)_6]^{2+} < [Fe(H_2O)_6]^3$

i. நீறமாலை வேதி வரிசையில் Cl குறைபுல ஈனி. ii. ${
m Fe}^{2_+} < {
m Fe}^{3_+}$ (CFS அதிகம்)

வினா :_1) + 2 ஆக்ஸிஜனேற்ற எண் கொண்ட ஹெக்ஸா சயனோ அணைவுகள் மஞ்சள் நீறம் உடையவை. ஆனால் ஹெக்ஸா அக்வா சேர்மங்கள் பச்சை (அ) நீல நீறம் உடையவை.

விடை : CFSE lpha ஈனியின் வலிமை :

ஒரு அணைவுச்சோமத்தீன் நீறம் என்பது அச்சோமம் உறிஞ்சும் நீறத்தீன் இணைநீறமாக அமையும்.

கரிம உளைகச் சோமங்கள் (Organometallic compounds)

உலோக அணுவுடன் கார்பன் ஏற்படுத்தும் பிணைப்பு கொண்ட சேர்மங்கள் கரிம உலோக சேர்மங்கள் எனப்படும்.

நான்முக்[Ni(CO),]

i. σ பிணைப்புள்ள சோமாங்கள் : CH₃ MgBr, CH₃Li, (C₂H₅)₄ Pb, Al₂ (CH₃)₆

ii. π பிணைப்புள்ள சோ்மங்கள் : ஜெய்செல் உ<mark>ப்பு, பொ்ரோ சீன்</mark>, டை பென்சீன் குரோமியம்

அணைவுச் சோ்மங்களின் நீலைப்புத் தன்மை

M + 4L	\rightarrow	ML	
M - L	\rightarrow	ML,	$K_1 = [ML] [M] [L]$
ML + L	\rightarrow	ML ₂ ,	$K_{2} = [ML_{2}] / [M] [L]$
$ML_2 + L$	\rightarrow	ML ₃ ,	$K_{3} = [ML_{3}] / [ML_{2}] [L]$
$[ML_3] + L$	→ AL	ML_4 , = TRUE	$K_{4} = ML_{4} / [ML_{3}] [L]$

ஒட்டுமொத்த நீலைப்புத் தன்மை மாறிலி.

$$\beta_4 = K_1 X K_2 X K_3 X K_4 = \frac{[ML_4]}{[M][L]^4}$$

ஈனிகளின் எண்ணிக்கை அதிகரிக்க அதிகரிக்க, நிலைப்புத் தன்மை மாறிலி குறைகிறது. பிரிகை மாறிலி (அ) நிலைப்புத் தன்மையற்ற மாறிலி உருவாதல் மாறிலியின் தலைகீழி ஆகும்.

வினா : $[\mathrm{Ni}(\mathrm{NH}_{*})_{\epsilon}]^{2_{+}}$ ன் eta நமதிப்பு $2\ge 10^{12}$ எனில் நிலைப்புத் தன்மையற்ற மாறிலியை கணக்கீடு.

K (நீலைப்புத் தன்மை அற்ற மாறிலி)
$$=rac{1}{eta_6}=rac{1}{2}\ x\ 10^{-12}\ =\ 5X10^{-13}$$

https://www.qb365.in/materials/

பயிற்சி வினாக்கள் –1

1.	[Pt Cl ₄] ^{2–} ன் வடிவ அ) நான்முகி	ம் ஆ) தளசதுரம்	இ) எண்முகி	ஈ.) பிரமிடு				
2.	$[\operatorname{Pt}\left(\mathrm{en} ight)_{2}\operatorname{Cl}_{2}]$ ல் ஈனிகள் வழங்கிய e –களின் எண்ணிக்கை							
	ക്വ) 8	ஆ)10	⑤) 12	फ़) 14				
З.	π அமில ஈனி எத							
	a) CO	b) NH ₃	c) <i>Cl</i>	d) H_2O				
4.	[Ni(CO) ₄] ²⁺ ல் Ni a) SP ³	iஇன் இனக்கலப்பு b) dSP ²		d) SP ³ d				
5		ം കണക്കില് നങ്ങിക്ക് പ	ം, ∞- എന്നെന്നെ എഡണിഡിന്ന	(ம) ஆர்பிட்டால்களை				
0.	நோக்கு வரும்.							
	a) dxy, $dx^2 - y^2$	b) $dx^2 - y^2$	c) dxy, dyz	d) dz^2 , dxz				
6.	$[M(en)_2(C_2O_4)]$	C <i>l</i> அணைவில் உலோக ச	9ഞ്ഞുഖിன்) ஆக்ஸிஜனேற்ற எண்				
	a) 7	b) 8	c) 9	d) 6				
7.	கோபாலட் (111) குளோரைடு அம்மோனியாவுடன அதிகமான அணைவுகளை ஏற்படுத்தும், பின்வருவனவற்றுள் AgNO ₃ உடன் Cl ⁻ அயனிக்கான சோதனைக்கு உட்படாதது a) COCl ₃ .6NH ₃ b) COCl ₃ , 3NH ₃ c) COC <mark>l₃, 4NH₃ d)</mark> COCl ₃ . 5NH ₃							
8.	$\mu=2.84BM$ கெ	ாண்ட அயனி						
	a) CO ²⁺	b) Ni ²⁺	c) Ti ³⁺	d) Cr ²⁺				
9.	CFSE = 0 கொண்ட அணைவு							
10.	உயர் சுழற்சி (high spin)d ⁴ எண்முக் அணைவில் CFSE							
	a) $-1.8 \Delta_0$ b) -	$-1.6\Delta_{o} + P c) -1.2\Delta_{o}$	d) $-0.6\Delta_o$					
11.	கரைசலின் $\mathrm{Co(NH}_3)_6{Cl}_2$ உருவாக் <mark>கிப அயனிகளின் எண்ணிக்கை</mark>							
	a) 6	b) 4	c) 3	d) 2				
12.	Hg[Co(CNS)4] ன் சரியான பெயர்							
	அ) மெர்குரி டெட்ராதயோசயனேட்டோ கோபால்டேட் (II)							
	ஆ) மொ்குரி கோபால்ட் டெட்ரா சல்பாசயனோ (II)							
	இ) மெர்குரி டெட்ரா சல்போ சயனைடு கோபால்டேட் (II)							