Types of complexes:

The coordination compounds can be classified into the following types based on (i) the net charge of the complex ion, (ii) kinds of ligands present in the coordination entity.

Classification based on the net charge on the complex:

A coordination compound in which the complex ion

- i. carries a net positive charge is called a cationic complex. Examples: $[Ag(NH_3)_2]^+$, $[Co(NH_3)_6]^{3+}$, $[Fe(H_2O)_6]^{2+}$, etc
- ii. carries a net negative charge is called an anionic complex. Examples: $[Ag(CN)_2]^{-1}$, $[Co(CN)_6]^{3-1}$, $[Fe(CN)_6]^{4-1}$, etc
- iii. bears no net charge, is called a neutral complex. Examples: $[Ni(CO)_4]$, $[Fe(CO)_5]$, $[Co(NH_3)_3(Cl)_3]$,

Classification based on kind of ligands:

A coordination compound in which

- i. the central metal ion/atom is coordinated to only one kind of ligands is called a homoleptic complex. Examples: $[Co(NH_3)_6]^{3+}$, $[Fe(H_2O)_6]^{2+}$,
- ii. the central metal ion/atom is coordinated to more than one kind of ligands is called a heteroleptic complex. Example, [Co(NH₃)₅Cl]²⁺, [Pt(NH₃)₂Cl₂)]