Experimental values of Ions

The magnetic moment calculated using the experimental values in the following table. In most of the cases, the agreement is good.

Ion	Configuration	n	$\mu = \sqrt{n(n+2)} \mu_{B}$	$\mu_{(observed)}$
Sc ³⁺ ,Ti ⁴⁺ ,V ⁵⁺	d^0	0	$\mu = \sqrt{0(0+2)} = 0 \mu_{\rm B}$	diamagnetic
Ti^{3+}, V^{4+}	d¹	1	$\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.73 \mu_{\rm B}$	1.75
Ti^{2+}, V^{3+}	d^2	2	$\mu = \sqrt{2(2+2)} = \sqrt{8} = 2.83 \mu_{\rm B}$	2.76
Cr ³⁺ , Mn ⁴⁺ , V ²⁺	d^3	3	$\mu = \sqrt{3(3+2)} = \sqrt{15} = 3.87 \mu_{\rm B}$	3.86
Cr ²⁺ , Mn ³⁺	d^4	4	$\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.89 \ \mu_{\rm B}$	4.80
Mn ²⁺ , Fe ³⁺	d ⁵	5	$\mu = \sqrt{5(5+2)} = \sqrt{35} = 5.91 \mu_{\rm B}$	5.96
Co ³⁺ , Fe ²⁺	d ⁶	4	$\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.89 \ \mu_{\rm B}$	5.3-5.5
Co ²⁺	d ⁷	3	$\mu = \sqrt{3(3+2)} = \sqrt{15} = 3.87 \mu_{\rm B}$	4.4-5.2
Ni ²⁺	d ⁸	2	$\mu = \sqrt{2(2+2)} = \sqrt{8} = 2.83 \mu_{\rm B}$	2.9-3.4
Cu ²⁺	d ⁹	1	$\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.732 \mu_{\rm B}$	1.8-2.2
Cu ⁺ , Zn ²⁺	d ¹⁰	0	$\mu = \sqrt{0(0+2)} = 0 \mu_{\text{B}}$	diamagnetic