Types of Variable Scope with Example

1. Local Scope
Local scope refers to variables defined in current function. Always, a
function will first look up for a variable name in its local scope. Only if it

does not find it there, the outer scopes are checked.

Look at this example

1. Disp(): Entire program Output of the Program
2, a=7 7
Disp():
: a=7
3. printa i
4. Disp() Disp ()

2. Global Scope
A variable which is declared outside of all the functions in a program is
known as global variable. This means, global variable can be accessed inside

or outside of all the functions in a program. Consider the following example

1. a:==10 Entire program Output of the Program
2. Disp(): a:=10 7

Disp()
3. a=7 a;=P? 10

print a
4. printa Disp 1():

print a

5. Disp()
6. printa

3. Enclosed Scope
A function (method) with in another function is called nested function. A
variable which is declared inside a function which contains another function
definition with in it, the inner function can also access the variable of the

outer function. This scope is called enclosed scope.

When a compiler or interpreter search for a variable in a program, it first

search Local, and then search Enclosing scopes. Consider the following

example

1. Disp(): Entire program Output of the Program

2. a=10 ()| 10
Disp()

3. Displ(): a=10 10
Disp 1():

4. printa
Disp 1():

5. Displ() _ print a Y,

6. printa _ Disp())

7. Disp()

4. Built-in Scope

The built-in scope has all the names that are pre-loaded into the program
scope when we start the compiler or interpreter. Any variable or module
which is defined in the library functions of a programming language has
Built-in or module scope. They are loaded as soon as the library files are

imported to the program

Entire program Library files associated

[Built in/module scope -]—) with the software
a N\
(’DiSP()

Disp 1():
print a
Disp 1():

_ print a
_Disp() J

