Probability Important Notes and Formulas related to Event:

Probability of an Event

In a random experiment, let S be the sample space and $E \subseteq S$. Then if E is an event, the probability of occurrence of E is defined as

$$
P(E)=\frac{\text { Number of outcomes favourable to occurence of } E}{\text { Number of all possible outcomes }}=\frac{n(E)}{n(S)}
$$

This way of defining the probability is applicable only to finite sample spaces. So in this chapter, we will be dealing problems only with finite sample spaces.
> $P(E)=\frac{n(E)}{n(S)}$
> $P(S)=\frac{n(S)}{n(S)}=1$. The probability of sure event is 1 .
$>P(\phi)=\frac{n(\phi)}{n(\mathrm{~s})}=\frac{0}{n(s)}=0$. The probability of impossible event is 0 .
$>$ Since E is a subset of S and ϕ is a subset of any set,

$$
\begin{aligned}
& \phi \subseteq E \subseteq S \\
& P(\phi) \leq P(E) \leq P(\mathrm{~S}) \\
& 0 \leq P(E) \leq 1
\end{aligned}
$$

Therefore, the probability value always lies from 0 to 1 .
$>$ The complement event of E is \bar{E}.
Let $P(E)=\frac{m}{n}$ (where m is the number of favourable outcomes of E and n is the total number of possible outcomes).

$$
P(\bar{E})=\frac{\text { Number of outcomes unfavourable to occurance of } E}{\text { Number of all possible outcomes }}
$$

$$
\begin{aligned}
& P(\bar{E})=\frac{n-m}{n}=1-\frac{m}{n} \\
& P(\bar{E})=1-P(\mathrm{E})
\end{aligned}
$$

$>P(E)+P(\overline{\mathrm{E}})=1^{\prime}$

