Coordinate Geometry Important Points and Results:

> "As the area of a triangle can never be negative, we must take the absolute value, in case area happens to be negative".
$>$ To find the area of a quadrilateral, we divide it into triangular regions, which have no common area and then add the area of these regions.
> The area of the quadrilateral is never negative. That is, we always take the area of quadrilateral as positive.
> Two French mathematicians Rene Descartes and Pierre-de-Fermat were the first to conceive the idea of modern coordinate geometry by 1630s.
$>$ The inclination of X axis and every line parallel to X axis is 0°
$>$ The inclination of Y axis and every line parallel to Y axis is 90°.
> The slope of a vertical line is undefined.
$>$ In any triangle, exterior angle is equal to sum of the opposite interior angles.
$>$ Let l_{1} and l_{2} be two lines with well-defined slopes m_{1} and m_{2} respectively, then
(i) l_{1} is parallel to l_{2} if and only if $m_{1}=m_{2}$.
(ii) l_{1} is perpendicular to l_{2} if and only if $m_{1} m_{2}=-1$.
> If the slopes of both the pairs of opposite sides are equal then the quadrilateral is a parallelogram.
$>$ If $b>0$, then the line $y=b$ lies above the X axis
$>$ If $b<0$, then the line $y=b$ lies below the X axis
> If $b=0$, then the line $y=b$ is the X axis itself.
$>$ If $c>0$, then the line $x=c$ lies right to the side of the Y axis
$>$ If $c<0$, then the line $x=c$ lies left to the side of the Y axis
$>$ If $c=0$, then the line $x=c$ is the Y axis itself
$>$ If a line with slope $m, m \neq 0$ makes x intercept d, then the equation of the straight line is $y=m(x-d)$.
> $y=m x$ represent equation of a straight line with slope m and passing through the origin.
$>$ For, the point (x, y) in a $x y$ plane, the x coordinate x is called "Abscissae" and the y coordinate y is called "Ordinate".
> The formula for converting Celsius to Fahrenheit is given by $F=\frac{9}{5} C+$ 32,which the linear equation is representing a straight line derived in the example.
> The graet mathematical physicists like Galileo and Newton used coordinate geometry to characterize the motions of objects in plane and space.

