NUMBERS AND SEQUENCES

Points to Remember

- Euclid's division lemma

If a and b are two positive integers then there exist unique integers q and r such that $a=b q+r, 0 \leq r<|b|$

- Fundamental theorem of arithmetic

Every composite number can be expressed as a product of primes and this factorization is unique except for the order in which the prime factors occur.

- Arithmetic Progression
(i) Arithmetic Progression is $a, a+d, a+2 d, a+3 d, \ldots . n^{\text {th }}$ term is given by

$$
t_{n}=a+(n-1) d
$$

(ii) Sum to first n terms of an A.P. is $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
(iii) If the last term $l\left(n^{\text {th }}\right.$ term is given, then $\left.S_{n}=\frac{n}{2}[a+1]\right)$

- Geometric Progression
(i) Geometric Progression is a, $a r, a r^{2}, \ldots, a r^{n-1} \cdot n^{\text {th }}$ term is given by $t_{n}=a r^{n-1}$
(ii) Sum to first n terms of an G.P. is $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ if $r \neq 1$
(iii) Suppose $r=1$ then $S_{n}=n a$
(iv) Sum to infinite terms of a G.P. $a+a r+a r^{2}+\cdots$ is $S=\frac{a}{1-r}$, where $-1<r<1$
- Special Series
(i) The sum of first n natural numbers $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
(ii) The sum of squares of first n natural numbers

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(iii) The sum of cubes of first n natural numbers $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
(iv) The sum of first n odd natural numbers $1+3+5+\cdots+(2 n-1)=n^{2}$

