Geometric Progression (GP):

Key Points related to GP number sequence:
> If we consider the ratio of successive terms of the G.P. then we have $\frac{t_{2}}{t_{1}}=\frac{a r}{a}=r, \frac{t_{3}}{t_{2}}=\frac{a r^{2}}{a}=r, \frac{t_{4}}{t_{3}}=\frac{a r^{3}}{a r^{2}}=r, \frac{t_{5}}{t_{4}}=\frac{a r^{4}}{a r^{3}}=r$ Thus, the ratio between any two consecutive terms of the Geometric Progression is always constant and that constant is the common ratio of the given Progression.
> When the product of three consecutive terms of a G.P. are given, we can take the three terms as $\frac{a}{r}$, a, ar.
> When the products of four consecutive terms are given for a G.P. then we can take the four terms $\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}$.
> When each term of a Geometric Progression is multiplied or divided by a non- zero constant then the resulting sequence is also a Geometric Progression.
> The sum of first n natural numbers are also called Triangular Numbers because they form triangle shapes
$>$ The sum of squares of first n natural numbers is also called Square Pyramidal Numbers because they form pyramid shapes with square base.

