2. NUMBERS AND SEQUENCES

Important Theorems' and Results:-

$>$ The remainder is always less than the divisor.
$>$ If $r=0$ then $a=b q$ so b divides a.
$>$ Similarly, if b divides a then $a=b q$
> The above lemma is nothing but a restatement of the long division process; the integer's q and r are called quotient and remainder respectively.
$>$ When a positive integer is divided by 2 the remainder is either 0 or 1 . So, any positive integer will of the form $2 k, 2 k+1$ for some integer k.
> Euclid's Division algorithm will always produce remainder zero at some stage. Hence the algorithm should terminate.
$>$ Euclid's Division Algorithm is a repeated application of Division Lemma until we get zero remainder.
$>$ Highest Common Factor (HCF) of two positive numbers is denoted by (a, b).
$>$ Highest Common Factor (HCF) is also called as Greatest Common Divisor (GCD).
> Two positive integers are said to be relatively prime or co prime if their Highest Common Factor is 1.
$>$ If a prime number p divides $a b$ then either p divides a or p divides b.
That is p divides at least one of them.
$>$ If a composite number n divides $a b$, then n neighter divide a nor b. For example, 6 divides 4×3 but 6 neither divide 4 nor 3 .
> When a positive integer is divided by n, then the possible remainders are 0 , $1,2 . . . n-1$.
> Thus, when we work with modulo n, we replace all the numbers by their remainders upon division by n, given by $0,1,2,3 \ldots n-1$.
$>$ Two integers a and b are congruent modulo m, written as $a b^{\circ}(\bmod m)$, if they leave the same remainder when divided by m.
> While solving congruent equations, we get infinitely many solutions compared to finite number of solutions in solving a polynomial equation in Algebra.
$>$ Though all the sequences are functions, not all the functions are sequences.

