1. RELATIONS AND FUNCTIONS

Points to Remember:

- The Cartesian Product of A with B is defined as $A \times B=\{(a, b) \quad \mid$ for all $a \in A$, $b \in B\}$
- A relation R from A to B is always a subset of $A \times B$. That is $\mathrm{R} \subseteq A \times B$
- A relation R from X to Y is a function if for every $x \in X$ there exists only one $y \in Y$.
- A function can be represented by
(i) an arrow diagram
(ii) a tabular form
(iii) a set of ordered pairs
(iv) a graphical form
- Some types of functions
(i) One-one function
(ii) Onto function
(iii) Many-one function
(iv) Into function
- Identity function $f(x)=x$
- Reciprocal function $f(x)=\frac{1}{x}$
- Constant function $f(x)=c$
- Linear function $f(x)=a x+b, a \neq 0$
- Quadratic function $f(x)=a x^{2}+b x+c, a \neq 0$
- Cubic function $f(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$
- For three non-empty sets A, B and C, if $f: A \rightarrow B$ and $g: B \rightarrow C$ are two functions, then the composition of f and g is a function $g \circ f: A \rightarrow C$ will be defined as $g \circ f(x)=g(f(x))$ for all $x \in A$.
- If f and g are any two functions, then in general, $f \circ g \neq g \circ f$
- If f, g and h are any three functions, then $f \circ(g \circ h)=(f \circ g) \circ h$

