	11th Standard		Date : 14-Jan-19			
	Physics Reg.No.:		\top			
Γin	ne : 02:30:00 Hrs		To	otal M	larks :	70
	Section - I			1	5 x 1 =	15
oV	ote : i) All Questions are compulsory					
	ii) Choose the most suitable answer from the given four alternatives and rite the option code and the corresponding answer					
	If the length and time period of an oscillating pendulum have errors of 1% and 3% respectively the	en the	error	in		
,	measurement of acceleration due to gravity is	cii ciic	C1101			
	(a) 4% (b) 5% (c) 6% (d) 7%					
2)	Which of the following physical quantities have same dimensional formula?					
	(a) Torque and Workdone (b) Energy and Angular momentum (c) Force and Torque					
	(d) Angular momentum and Linear momentum					
3)	If a particle has negative velocity and negative acceleration, its speed					
	(a) increase (b) decrease (c) remains the same (d) is zero					
1)	An object is dropped in an unknown planet from height 50m. It reaches the ground in 2s. The acce	eleratio	n due	to gr	avity	in
	this unknown planet is					
	(a) g=20ms ⁻² (b) g=25ms ⁻² (c) g=15ms ⁻² (d) g=30ms ⁻²					
5)	A force vector applied on a mass is represented as $ec F=6\hat i-8\hat j+10\hat k$ and accelerates with $\sqrt{2}$ r	ns ⁻² Wh	ıat wil	ll be t	he ma	ass
	of the body?					
:1	(a) 10kg (b) 20kg (c) $10\sqrt{2}$ kg (d) $2\sqrt{10}$ kg	4 :	/a :a			
5)	Two masses m_1 and m_2 are experiencing the same force where $m_1 < m_2$ The ratio of their accelera (a) 1 (b) less than 1 (c) greater than 1 (d) all the three cases	tion a ₁ /	a ₁ is			
7)	When an object is at rest on the inclined rough surface					
	(a) Static and kinetic frictions acting on the object is zero (b) Static friction is not zero but kinetic friction.	ion is n	ot zer	0		
	(c) Static friction is not zero and kinetic friction is zero (d) Static and kinetic friction are not zero					
3)	What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R	so that	it car	າ com	plete	
	the loop?					
	(a) $\sqrt{2gR}$ (b) $\sqrt{3gR}$ (c) $\sqrt{5gR}$ (d) \sqrt{gR}					
9)	The coefficient of restitution (e) for a material is as follows					
	(a) e=0 (b) e=1 (c) 0 <e<1 (d)="" 0="">e>-1</e<1>					
LO)	A rope is wound around a hallow cylinder of mass 3 kg and radius 40cm/ What is the angular acce	leration	n of th	ie cyl	inder	if
	the rope is pulled with a force 30N? (a) 0.25rad s ⁻² (b) 25rad s ⁻² (c) 5ms ⁻² (d) 25s ⁻²					
۱1)	The magnitude of the Sun's gravitational field as experienced by Earth is					
,	(a) Same over the year (b) decreases in the month of January and increase in the month of July					
	(c) decrease s in the month of July and increase in the month of January					
	(d) increase during day time and decreases during night time					
L2)	For a given material, the rigidity modulus is $\left(\frac{1}{3}\right)^{rd}$ of young's modulus. Its Poisson's ratio is					
	(a) 0 (b) 0.25 (c) 0.3 (d) 0.5					
L3)	A hot cup of coffee is kept on the table. After sometime it attains a thermal equilibrium with the si	urrounc	dings.	Ву		
	considering the air molecule in the room as a thermodynamic system, which of the following is tr		-			

(a) $\Delta U > 0$, Q = 0 (b) $\Delta U > 0$, W = 0 (c) $\Delta U > 0$, Q > 0 (d) $\Delta U = 0$, Q > 0

14) The efficiency of a heat engine working between the freezing point and boiling point of water is

- (a) 6.25% (b) 20% (c) 26.8% (d) 12.5%
- 15) The dimension of sphere of influence molecule is
 - (a) 1Å (b) 10Å (c) 100Å (d) 0.1Å

Section - II

 $9 \times 2 = 18$

II. Answer any six questions: (Question No.20 is compulsory)

- 16) What are the limitation of the dimensional analysis?
- 17) Compare scalars and vectors
- 18) Give the various types of friction. Suggest a few methods to reduce friction.
- 19) Differentiate elastic and inelastic collisions.
- 20) Calculative the work done by force of 30N in lifting a load of 2kg to a height of 10m (g = 10ms⁻²)
- 21) How do you distinguish between stable an unstable equilibrium?
- 22) Why is the energy of a satellite or any other planet negative?
- 23) Stae Hook's law of elasticity
- 24) In an adiabatic process with an equation $PT^{r/1-r}$ the pressure of a gas is found to be proportional to the cube of the temperature. What is the ratio o C_p/C_v of the gas?

Section - III $9 \times 3 = 27$

III. Answer any six questions: (Question No.29 is compulsory)

- 25) How is the diameter of the Moon measured using parallax method?
- 26) Write a short note on vector product between two vectors
- 27) Explain the concept of inertia. Give examples for inertia of motion, inertia of rest and inertia of direction.
- 28) Compare conservative and non-consevative forces
- 29) The position vectors of two points 10kg and 5kg are $(3\hat{i}+2\hat{j}+4\hat{k})m$ and $(3\hat{i}+6\hat{j}+5\hat{k})m$ respectively. Locate the position centre of mass
- 30) State Kepler's three laws
- 31) Distinguish between Streamlined flow and turbulent flow
- 32) Obtain an ideal gas equation from Boyle's and Charles' law
- 33) A car moving with a speed of 40km/hr comes to rest at a distance of 2m after applying brakes. If the same car is moving with a speed of 80km/hr, what is the minimum stopping distance?

Section - IV $10 \times 5 = 50$

IV. Answer All Questiuons:

- 34) Explain the principle of homogeneity of dimensions. What are its uses? Give example.
- 35) State Newton's three laws and discuss their significance
- 36) Discuss the properties of scalar and vector products
- 37) Derive the equation of motion for range and maximum height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.
- 38) Explain the motion in a vertical circle
- 39) State and prove parallel axes theorem
- 40) What is escape speed? Derive an expression for it
- 41) State and prove Bernoulli's theorem.
- 42) Discuss the various modes of heat transfer
- 43) Derive Mayer's relation for an ideal gas
