Model Question Paper

Current Electricity - Part I

12th Standard Reg.No. Physics I.Answer all the Questions. II.Use blue pen only. Time : 01:00:00 Hrs Total Marks: 70 Section-A $5 \times 1 = 5$ 1) A charge of 60 C passes through an electirc lamp in 2 minutes. Then the current in the lamp is (a) 30 A (b) 1 A (c) 0.5 A (d) 5 A 2) The material through which electric charge can flow easily is (a) quartz (b) mica (c) germanium (d) copper 3) The current flowing in a conductor is proportional to (a) drift velocity (b) 1 / area of cross section (c) 1 / no of electrons (d) square of area of cross section 4) A toaster operating at 240V has a resistance of 120 $\Omega.$ The power is (a) 400 W (b) 2 W (c) 480 W (d) 240 W 5) If the length of a copper wire has a certain resistance R, then on doubling the length its specific resistance (a) will be doubled (b) will be become 1/4th (c) will become 4 times (d) will remain the the same Section-B 5 x 3 = 15 6) What is current electricity? 7) What are free electrons? 8) What is meant by electromotive force? 9) Define electric current 10) Define drift valocity. Section-C 5 x 5 = 25 11) $R_{c} = 150$ ~~~~ From the following network find the effective resistance between A and B. \sim $R_2 = 15\Omega$ 12) In Wheatstone's bridge , the values of P,Q and R are 4Ω , $8\Omega and 6\Omega$ respectively. 24Ω resistor is connected in the place of "S". Determine the value of additional resistance to be connected parallel to 24Ω so as the balance the bridge. 13) Three resistors of resistances 5Ω , 3Ω and 2Ω respectively are connected in series with 10V supply. Find the effective resistance of the combination and the voltage drop across each resistor. 14) In a metre bridge, the balancing length for a 100 resistance in left gap is 51.8 cm. Find the unknown resistance and specific resistance of a wire of length 108 cm and radius 0.2 mm 15) The resistance of a conductor is 4Ω at 24°C and 5Ω at 80°C. Calculate the temperature coefficient of resistance of the material. Also find the resistance at 0°C. $5 \times 5 = 25$

- 16) Derive an expression for the effective resistance of a series with a neat diagram.
- 17) Derive an expression for the effective resistance of resistors in parallel network with a neat diagram.
- 18) What are the applications of superconductors?
- 19) Explain the construction and working of Leclanche with a neat sketch.
- 20) Explain the construction and working of Lead acid accumulator with a neat diagram.