Model Question Paper

Current Electricity - Part I

12th Standard

Physics

Reg.No. \square
I.Answer all the Questions.
II.Use blue pen only.

Time : 01:00:00 Hrs
Section-A

1) A charge of 60 C passes through an electirc lamp in 2 minutes. Then the current in the lamp is
(a) 30 A
(b) 1 A
(c) 0.5 A
(d) 5 A
2) The material through which electric charge can flow easily is
(a) quartz
(b) mica
(c) germanium
(d) copper
3) The current flowing in a conductor is proportional to
(a) drift velocity
(b) $1 /$ area of cross section
(c) $1 /$ no of electrons
(d) square of area of cross section
4) A toaster operating at 240 V has a resistance of 120Ω. The power is
(a) 400 W
(b) 2 W (c) 480 W
(d) 240 W
5) If the length of a copper wire has a certain resistance R, then on doubling the length its specific resistance
(a) will be doubled
(b) will be become $1 / 4$ th
(c) will become 4 times
(d) will remain the the same

Section-B
6) What is current electricity?
7) What are free electrons?
8) What is meant by electromotive force?
9) Define electric current
10) Define drift valocity.

Section-C
11)

12) In Wheatstone's bridge, the values of P, Q and R are $4 \Omega, 8 \Omega a n d 6 \Omega$ respectively. 24Ω resistor is connected in the place of "S".Determinethe value of additional resistance to be connected parallel to 24Ω so as the balance the bridge.
13) Three resistors of resistances $5 \Omega, 3 \Omega$ and 2Ω respectively are connected in series with 10 V supply. Find the effective resistance of the combination and the voltage drop across each resistor.
14) In a metre bridge, the balancing length for a 10Ω resistance in left gap is 51.8 cm . Find the unknown resistance and specific resistance of a wire of length 108 cm and radius 0.2 mm .
15) The resistance of a conductor is 4Ω at $24^{\circ} \mathrm{C}$ and 5Ω at $80^{\circ} \mathrm{C}$. Calculate the temperature coefficient of resistance of the material. Also find the resistance at $0^{\circ} \mathrm{C}$.
16) Derive an expression for the effective resistance of a series with a neat diagram.
17) Derive an expression for the effective resistance of resistors in parallel network with a neat diagram.
18) What are the applications of superconductors?
19) Explain the construction and working of Leclanche with a neat sketch.
20) Explain the construction and working of Lead acid accumulator with a neat diagram.

