Model Question Paper

Analytical Geometry - Part IV

12th Standard Mathe

	Maths	Reg.No. :
I.Answer all the Questions.		
II Usa blua pan anly		

II.Use blue pen only.

Time: 02:00:00 Hrs

Section-A $5 \times 1 = 5$

Total Marks: 81

1) If the length of major and semi-minor axes of an ellipse are 8,2 and their corresponding equations y-6=0 and x+y=0 then the equations of the ellipse is

 $\text{(a)} \ \ \frac{{(x+4)}^2}{4} + \frac{{(y-6)}^2}{16} = 1 \qquad \text{(b)} \ \ \frac{{(x+4)}^2}{16} + \frac{{(y-6)}^2}{4} = 1 \qquad \text{(c)} \ \ \frac{{(x+4)}^2}{16} - \frac{{(y-6)}^2}{4} = 1 \qquad \text{(d)} \ \ \frac{{(x+4)}^2}{4} - \frac{{(y-6)}^2}{16} = 1$

2) The straight line 2x-y+c=0 is a tangent to the ellipse $4x^2+8y^2=32$ if c is.

(a) $\pm 2\sqrt{3}$ (b) ± 6 (c) 36 (d) ± 4

3) The sum of the distance of any point on the ellipse $4x^2+9y^2=36$ from $(\sqrt{5},0)$ and $(-\sqrt{5},0)$ is

(a) 4 (b) 8 (c) 6 (d) 18

4) The radius of the director circle of the conic $9x^2 + 16y^2 = 144$ is

(a) $\sqrt{7}$ (b) 4 (c) 3

5) The locus of foot of perpendicular from the focus to a tangent of the curve $16x^2+25y^2=400$ is

(a)
$$x^2 + y^2 = 4$$
 (b) $x^2 + y^2 = 25$ (c) $x^2 + y^2 = 16$ (d) $x^2 + y^2 = 9$

Section-B 4 x 3 = 12

6) Find the equation of the parabola if Vertex(0, 0); focus: (0,-4).

Find the equation of the parabola if Vertex (1, 4); focus: (-2, 4).

Find the equation of the parabola if Vertex(1, 2); flatus return: y=5

Find the equation of the parabola if Vertex (1, 4); open leftward and passing through the point: (-2, 10).

Section-C $4 \times 6 = 24$

10) A standard rectangular hyperbola has its vertices at (5,7) and (-3,-1). Find its equation and asymptotes.

11) Find the equation of the rectangular hyperbola which has its centre at (2,1) one of its asymptotes 3x - y - 5 = 0 and which passes through the point (1,-1).

12) Prove that the tangent at any point to the rectangular hyperbola forms with the asymptotes a triangle of constant area.

13) Find the axis, vertex, focus, directrix, equation of the latus rectum, length of the latus rectum for the following parabolas and hence draw their graphs.

$$(y+2)^2 = -8(x+1)$$

Section-D 4 x 10 = 40

14) Find the axis, vertex, focus, equation of directrix, latus rectum, length of the latus rectum for the following parabolas and hence sketch their graphs.

 $y^2 + 8x - 6y + 1 = 0$

15) Find the eccentricity centre, foci and vertices of the following hyperbolas and draw their diagrams. $x^2 - 4y^2 + 6x + 16y - 11 = 0$

16) Find the axis, vertex, focus, equation of directrix, latus rectum, length of the latus rectum for the following parabolas and hence sketch their graphs.

$$x^2 - 6x - 12y - 3 = 0$$

17) a) Find the axis, vertex, focus, equation of directrix and latus rectum and length of the latus rectum of the $x^3 - 4x + 4y = 0$ parabola and hence draw the diagram.

Find the eccentricity, centre, foci and vertices of the following hyperbola and draw the diagram $12x^2 - 4y^2 - 24x + 32y - 127 = 0$
