Model Question Paper

Differetial Calculus Part II - Part II

12th Standard

Maths	Reg.No.:			

I.Answer all questions.

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 85 $3 \times 1 = 3$

Section-A

- 1) If $x=r\cos\theta, y=r\sin\theta$, then $\frac{\partial r}{\partial x}$ is equal to (a) $\sec \theta$ (b) $\sin \theta$ (c) $\cos \theta$ (d) $\csc \theta$
- 2) Identify the true statements in the following (i). if a curve is symmetrical about the origin, then it is symmetrical about both axes. (ii). if a curve is symmetrical about the both the axes, then it is symmetrical about the origin. (iii). A curve f(x,y)=0 is symmetrical about the line y=x if f(x,y)=f(y,x). (iv). for the curve f(x,y)=0., if $f\left(x,y\right) =f\left(-y,-x
 ight)$ then it is symmetrical about the origin.

(a) (ii), (iii) (b) (i), (iv) (c) (i), (iii) (d) (ii), (iv)

3) If $u=\log\left(rac{x^2+y^2}{xy}
ight)$ then $xrac{\partial u}{\partial x}+yrac{\partial u}{\partial y}$ is (a) 0 (b) u (c) 2u (d) u^{-1}

> **Section-B** $3 \times 3 = 9$

- 4) Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 1%
- Find the differential dy and evaluate dy for the given values of x and dx: $y = x^4 3x^3 + x 1$, x = 2, dx = 0.1
- Find the differential dy and evaluate dy for the given values of x and dx: $y=(x^2+5)^3, x=1, dx=0.05$

Section-C $5 \times 6 = 30$

- Using Euler's theorem prove the following $u=xy^2sin(\frac{x}{y})$ show that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=3u$ 7)
- Compute the values of Δy and dy if $y = f(x) = x^3 + x^2 2x + 1$ where x changes (i) from 2 to 2.05 and (ii) from 2 to 2.01.
- Use differentials to find an approximate value for $\sqrt[3]{65}$.
- 10) The time of swing T of a pendulum is given by $T = k\sqrt{\ell}$ where k is a constant. Determine the percentage error in the time of swing if the length of the pendulum / changes from 32.1cm to 32.0cm.
- 11) A circular template has a radius of $10cm~(\pm 0.02)$ Determine the possible error in calculating the area of the templates. Find also the percentage error.

Section-D 5 x 10 = 50

- 12) Trace the following curve: $y = x^3$
- 13) Verify Euler's theorem for $f(x,y)=rac{1}{\sqrt{x^2+y^2}}$ ($\mathbf{x}^2+\mathbf{y}^2$) $^{-1/2}$
- 14) Prove $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right) \cos \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$ if $u = \sin \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$ 15) a) Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for the function $u = \sin \left(\frac{x}{y} \right)$

(OR)

b) Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ where $u = \frac{x^2}{y} - \frac{2y^2}{x}$
