Model Question Paper

Vector Algebra - Part II

12th Standard Maths

I.Answer all the Questions.	

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 80

Section-A 4 x 1 = 4

- 1) The vectors $2\vec{i}+3\vec{j}+4\vec{k}$ and $a\vec{i}+b\vec{j}+c\vec{k}$ are perpendicular when
 - $\text{(a)} \ \ a=2 \ , \ b=3 \ , \ c=-4 \quad \ \text{(b)} \ \ a=4 \ , \ b=4 \ , \ c=5 \quad \ \text{(c)} \ \ a=4 \ , \ b=4 \ , \ c=-5 \quad \ \text{(d)} \ \ a=-2 \ , \ b=3 \ , \ c=4$
- 2) The area of the parallelogram having a diagonal $3\vec{i}+\vec{j}-\vec{k}$ and a side $\vec{i}-3\vec{j}+4\vec{k}$ is ,
 - (a) $10\sqrt{3}$ (b) $6\sqrt{30}$ (c) $\frac{3}{2}\sqrt{30}$ (d) $3\sqrt{30}$
- 3) If $\left| ec{a} + ec{b} \right| = \left| ec{a} ec{b} \right|$ then
 - (a) \vec{a} is parallel to \vec{b} (b) \vec{a} is perpendicular to \vec{b} (c) $|\vec{a}|=|\vec{b}|$ (d) \vec{a} and \vec{b} are unit vectors
- 4) If \vec{p},\vec{q} and $\vec{p}+\vec{q}$ are vectors of magnitude λ then the magnitude of $|\vec{p}-\vec{q}|$ is
 - (a) 2λ (b) $\sqrt{3}\lambda$ (c) $\sqrt{2}\lambda$ (d) 1

Section-B 4 x 3 = 12

- 5) If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$
- Show that the vectors $3\vec{i} 2\vec{j} + \vec{k}$, $\vec{i} 3\vec{j} + 5\vec{k}$ and $2\vec{i} + \vec{j} 4\vec{k}$ form a right angled triangle.
- Show that the points whose position vectors $4\vec{i}-3\vec{j}+\vec{k}, 2\vec{i}-4\vec{j}+5\vec{k}, \vec{i}-\vec{j}$ form a right angle.
- A force magnitude 5 units acting parallel to $2\vec{i}-2\vec{j}+\vec{k}$ displaces the point of application from (1,2,3) to (5,3,7). Find the work done.

Section-C 4 x 6 = 24

Reg.No.

- 9) Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a}.\vec{b} = \vec{a}.\vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$. Prove that $\vec{a} = \pm 2 \left(\vec{b} \times \vec{c} \right)$.
- 10) Prove by vector method that the parallelogram on the same base and between the same parallel are equal in area.
- 11) Prove that twice the area of a parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.
- 12) a) The constant forces $2\vec{i} 5\vec{j} + 6\vec{k}$, $-\vec{i} + 2\vec{j} \vec{k}$, and $2\vec{i} + 7\vec{j}$ act on a particle which is displaced from position $4\vec{i} 3\vec{j} 2\vec{k}$ to position $6\vec{i} + \vec{j} 3\vec{k}$. Find the
 - Find the unit vectors perpendicular to the plane containing the vectors $2\vec{i}+\vec{j}+\vec{k}$ and $\vec{i}+2\vec{j}+\vec{k}$

4 x 10 = 40

- 13) Show that the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and find their point of intersection
- 14) Find the vector and Cartesian equations of the plane containing the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{3}$ and parallel to the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z+1}{1}$.

 15) Find the vector and Cartesian equation of the plane through the point (1,3,2) and parallel to the lines $\frac{x+1}{2} = \frac{y+2}{-1} = \frac{z+3}{3}$ and $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z+2}{2}$
- 16) Find the vector and Cartesian equation to the plane through the point (-1,3,2) and perpendicular to the planes x+2y+2z=5 and 3x+y+2z=8
