## **Model Question Paper**

Vector Algebra - Part IV

12th Standard

Maths

| I.Answer all the Questions. |  |
|-----------------------------|--|

II.Use blue pen only.

Time: 02:00:00 Hrs

Reg.No.

Section-A

Total Marks: 80

4 x 1 = 4

1) If  $\left[ \vec{a}+\vec{b},\vec{b}+\vec{c},\vec{c}+\vec{a} \right]=8$  then  $\left[ \vec{a},\vec{b}\;,\;\vec{c} \right]$  is

(a) 4 (b) 16 (c) 32 (d) -4

2) The value of  $\left[ ec{i} + ec{j}, ec{j} + ec{k}, ec{k} + ec{i} 
ight]$  is equal to

(a) 0 (b) 1 (c) 2 (d) 4

3) The shortest distance of the point  $(2\,,10\,,1)$  from the plane  $\vec{r}$  .  $(3\vec{i}-\vec{j}+4\vec{k})=2\sqrt{26}$  is

(a)  $2\sqrt{26}$  (b)  $\sqrt{26}$  (c) 2 (d)  $\frac{1}{\sqrt{26}}$ 

4) The vector  $(\vec{a} imes \vec{b}) imes (\vec{c} imes \vec{d})$  is

(a) perpendicular to  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  (b) parallel to the vectors  $(\vec{a} \times \vec{b})$  and  $(\vec{c} \times \vec{d})$ 

(c) parallel to the line of intersection of the plane containing  $\vec{a}$  and  $\vec{b}$  and the plane containing  $\vec{c}$  and  $\vec{d}$ 

(d) perpendicular to the line of intersection of the plane containing  $\vec{a}$  and  $\vec{b}$  and the plane containing  $\vec{c}$  and  $\vec{d}$ 

**Section-B** 4 x 3 = 12

Find the area of the triangle whose vertices are (3, -1, 2), (1, -1, -3) and (4, -3, 1)

6) Show that torque about the point A(3, -1, 3) of a force  $4\vec{i} + 2\vec{j} + \vec{k}$  through the point B(5, 2, 4) is  $\vec{i} + 2\vec{j} - 8\vec{k}$ 

7) Show that vectors  $\vec{a}, \vec{b}, \vec{c}$  are coplanar if  $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$  and only if are coplanar.

8) The volume of a parallelopiped whose edges are represented by  $-12\vec{i} + \lambda \vec{k}$ ,  $3\vec{j} - \vec{k}$ ,  $2\vec{i} + \vec{j} - 15\vec{k}$  is 546. Find the value of  $\lambda$ .

**Section-C** 4 x 6 = 24

Find the shortest distance between the parallel lines  $ec{r} = \left(2ec{i} - ec{j} - ec{k}\right) + t\left(ec{i} - 2ec{j} + 3ec{k}\right)$  and  $ec{r} = \left(ec{i} - 2ec{j} + ec{k}\right) + s\left(ec{i} - 2ec{j} + 3ec{k}\right)$ 

10) Show that the following two lines are skew lines:  $\vec{r} = \left(\vec{3i} + 5\vec{j} + 7\vec{k}\right) + t\left(\vec{i} - 2\vec{j} + \vec{k}\right)$  and  $\vec{r} = \left(\vec{i} + \vec{j} + \vec{k}\right) + s\left(7\vec{i} + 6\vec{j} + 7\vec{k}\right)$ 

11) Find the shortest distance between the skew lines  $\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$  and  $\frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$ 

12) Show that (2, -1, 3), (1, -1, 0) and (3, -1, 6) are collinear.

tion-D  $4 \times 10 = 40$ 

13) Find the vector and Cartesian equations of the plane through the point (2,-1,-3) and parallel to the lines.  $\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-3}{-4}$  and  $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-2}{2}$ 

14) Find the vector and Cartesian equations of the plane passing through the points (-1,1,1) and (1,-1,1) and perpendicular to the plane x+2y+2z=5

15) Find the vector and Cartesian equations of the plane passing through the points (2,2,-1), (3,4,2) and (7,0,6)

16) a) Find the vector and Cartesian equations of a plane which is at a distance of 18 units from the origin and which is normal to the vector  $2\vec{i} + 7\vec{j} + 8\vec{k}$ 

b) The foot of the perpendicular drawn from the origin to a plane is (8, -4, 3). Find the equation of the plane.

\*\*\*\*\*\*\*\*\*\*\*