Model Question Paper

Integral Calculus - Part III

Maths

Reg.No. \square

I.Answer all questions

II.Use blue pen only.

Time : 01:00:00 Hrs

Section-A

1) Volume of solid obtained by revolving the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about major and minor axes are in the ratio.
(a) $b^{2}: a^{2}$
(b) $a^{2}: b^{2}$
(c) $a: b$
(d) $b: a$
2) The volume generated by rotating the triangle with vertices at $(0,0),(3,0)$ and $(3,3)$ about \mathbf{x} axis is.
(a) 18π
(b) 2π
(c) 36π
(d) 9π
3) The length of the arc of the curve $x^{2 / 3}+y^{2 / 3}=4$ is.
$\begin{array}{llll}\text { (a) } 48 & \text { (b) } 24 & \text { (c) } 12 & \text { (d) } 96\end{array}$

Section-B

$3 \times 3=9$
4) Evaluate the following problems using second fundamental theorem: $\int_{0}^{\frac{\pi}{2}} e^{3 x} \cos x d x$
5) Evaluate: $\int^{\frac{\pi}{2}} \cos ^{9} x d x$
6) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{8} x d x$

Section-C

7) Find the area of the region bounded by the line $y=2 x+1, y=3, y=5$ and y-axis.
8) Find the area of the region bounded by $x^{2}=36 y$, y - axis , $y=2$ and $\mathrm{y}=4$
9) Find the area of the circle whose radius is a.
10) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is revolved about major axis $a>b>0$
11)

Evaluate the following problems using second fundamental theorem $\int_{0}^{\frac{1}{2}} \sin 2 x \cos x d x$
12) Evaluate : $\int_{0}^{\frac{\pi}{6}} \cos ^{7} 3 x d x$

Section-D

13) Find the area of the region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ between the two latus rectums
14) Find the length of the curve $4 y^{2}=x^{3}$ between $\mathrm{x}=0$ and $\mathrm{x}=1$
15) Show that the surface area of the solid obtained by revolving the arc of the curve $\mathrm{y}=\sin \mathrm{x}$ from $\mathrm{x}=0$ to $x=\pi$ about x -axis is $2 \pi[\sqrt{2}+\log (1+\sqrt{2})]$
16) Find the surface area of the solid generated by revolving the arc of the parabola $y^{2}=4 a x$, bounded by its latus rectum about x - axis.
17) Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at a distance a and b from the centre of the sphere is $2 \pi r(b-a)$ and hence deduct the surface area of the sphere $(b>a)$
