Model Question Paper

Integral Calculus - Part III

12th Standard						
	Maths	Reg.No. :				
	I.Answer all questions					_
11.0	Jse blue pen only.					
Time : 01:00:00 Hrs Total Marks : 90					ks : 90	
	Section-A				3:	x 1 = 3
1)	Volume of solid obtained by revolving the area of the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ about major and minor axes are in the ratio.					
	(a) $b^2: a^2$ (b) $a^2: b^2$ (c) $a: b$ (d) $b: a$					
2)	The volume generated by rotating the triangle with vertices at $(0,0),(3,0)$ and $(3,3)$ about x axis is.					
	(a) 18π (b) 2π (c) 36π (d) 9π					
3)	The length of the arc of the curve $x^{2/3}+y^{2/3}=4$ is.					
	(a) 48 (b) 24 (c) 12 (d) 96					
	Section-B				3	x 3 = 9
4)	Evaluate the following problems using second fundamental theorem: $\int_{0}^{rac{\pi}{2}}e^{3x}cosxdx$					
5)	$\frac{\pi}{2}$, $\frac{1}{2}$, $\frac{1}{2}$					
	Evaluate: $\int_{0} \cos^{2} x dx$					
6)	Evaluate $\int \cos^8 m dm$					
	Section-C				6 x	6 = 36
7)	Find the area of the region bounded by the line y=2x+1, y=3, y=5 and y-axis.					
8)	Find the area of the region bounded by $x^2 = 36 \ y$, y - axis , y = 2 and y = 4					
9)	Find the area of the circle whose radius is a.					
10	$1 \frac{x^2}{a^2} + \frac{y^*}{b^2} = 1$ is revolved about major axis a>b>0					
11) $\frac{\pi}{2}$					
	Evaluate the following problems using second fundamental theorem $\int_{0}^{0} sin 2x cos x dx$					
12	$\int \frac{\pi}{6} \int \frac{\pi}{6} dx = \sqrt{2\pi} dx$					
	Evaluate: $\int_{0} \cos 5x dx$					
	Section-D				5 x 1	.0 = 50
13	$\frac{1}{2}$ Find the area of the region bounded by th <mark>e ellipse $rac{x^2}{9}+rac{y^2}{5}=1$ between the two latus rectums</mark>					
14) Find the length of the curve $4y^2=x^3$ between x=0 and x=1					
15) Show that the surface area of the solid obtained by revolving the arc of the curve y=sinx from x=0 to $x=\pi$ about x-axis is $2\pi[\sqrt{2}+1]$	$\log(1+\sqrt{2})]$				
16) Find the surface area of the solid generated by revolving the arc of the parabola $y^2=4ax$, bounded by its latus rectum about x - axi	s.				
17) Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at a distance a and b from the cen	tre of the spher	e is $2 \imath$	$\tau r(b -$	a)anc	ł

hence deduct the surface area of the sphere $\left(b>a
ight)$
